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Abstract

Helical Flux Compression Generators (HFCG) are used for generation of mega-amper
current and high magnetic fields. We propose the two dimensional HFCG filament model
based on the new description of the stator and armature contact point. The model devel-
oped enables one to quantitatively describe the intrinsic magnetic flux losses and predict
the results of experiments with various types of HFCGs. We present the effective re-
sistance calculations based on the non-linear magnetic diffusion effect describing HFCG
performance under the strong conductor heating by currents.

1 Introduction

Helical flux compression generators (HFCGs) are compact pulsed power sources
of current and voltage. The interest in HFCG studies primarily stems from their
unique capability to achieve very high energy densities, magnetic field strengths
and to generate high-power current pulses. They find promising applications in
particle accelerator technology, magnetic plasma confinement, neutron radiation
pulse and Z-pinch generation, as well as in thermonuclear research. In this field,
they are a relatively cheap option to large stationary mega-ampere pulsed current
generators. There is an interesting proposal to use HFCGs with nuclear explo-
sives for developing accelerators having a short operating time and a very large
beam luminosity at the energies only recently available in modern accelerators.
Moreover, based on HFCG, it is possible to create a large pulsed magnetic lens
for focusing proton beams of intensity 1023 protons per second per surface area
of about 1 mm2 [1].

The idea of the FCG was first proposed and substantiated in 1951 by A. D.
Sakharov [1], who suggested converting the chemical energy of explosives into
magnetic field energy. His suggestions were implemented in 1952 in the MK-1
∗E-mail:bycel@tut.by
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experiments on magnetic flux compression performed in VNIIEF (Russian Federal
Nuclear Center All-Russia Research Institute of Experimental Physics). In 1952,
M. Fowler in the United States compressed the magnetic field using his first plate
generator [11]. Many countries have joined in the research on FCGs ever since.

Some difficulties were encountered in theoretical description of the HFCG.
Theoretically predicted currents were several times as large as those measured
experimentally [8].

Various empirical factors affecting the magnetic flux losses were used to elim-
inate the discrepancies between theoretical estimates and experimental data. As
a rule, these factors were not of universal character, and thus applied to certain
HFCG designs or operation parameters. For example, the resistance could be
increased by a factor of two and more, depending on the HFCG design, the load
used, and the initial current. A number of HFCG numerical models using these
factors have been proposed over the years. The awareness of the fact that besides
the resistance losses, there exist other losses in the vicinity of the contact point
appeared to be the only consistent view [7,8, 10].

The numerical model suggested in the present paper enables describing the
parameters of operating HFCGs. It is shown that because of the lack of compre-
hension about the nature and effects of magnetic flux losses, some of them were
neglected earlier. The developed numerical model of the HFCG moving contact
point gives the insight into the nature of these losses and allows computing their
values.

2 Geometry and Operating Principle

HFCG is a device compressing a magnetic flux. The magnetic flux Φ passing
through the surface S can be found using the surface integral:

Φ =

∫
S
B · ds, (1)

where B is the magnetic field induction, and if the closed circuit c belongs to the
open surface S, then [13]:

dΦ

dt
= − d

dt

∫
S
B · ds =

∮
c
E · dl, (2)

where E is the electric field strength along the closed circuit c, E · dl shows that
here the differential length dl the electric field tangential with respect to the
circuit are used. One can see from (2) that with the conserved magnetic flux and
decreasing length of the conducting closed circuit c, both the electric field and the
current increase in the circuit. By definition, the inductance of the closed circuit
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having a current I is

L =
Φ

I
, (3)

The physical principle governing the operation of the HFCG is based on Faraday’s
law.

dΦ

dt
= −RI, (4)

where Φ is the magnetic flux in the HFCG, R is the resistance, and I is the
current.

Figure 1: Main parts of the HFCG. Sectional view

The HFCG design is illustrated in Fig. 1; its main parts are the solenoid, called
the stator, and the metal tube, called the armature. The stator with a single-
wire coil is called the single-wire stator; a plural number of metal wires helically
wound together and arranged in parallel relation with each other form a multi-
wire stator; the number of winds corresponds to the number of wires wound in
parallel. The armature, made of copper or aluminium, is placed inside the stator
and is filled with explosives. Cups, conducting tubes having the same radius as
the radius of the stator, are often used in HFCG design: placed at the head, they
reduce the effect of the armature and stator closure on the HFCG performance,
placed at the back, they provide the current output to the load. The armature
and the stator are switched into the circuit and connected through the load, as
shown in Fig. 2.

The external magnetic field or the initial current in the stator are used to
produce a magnetic flux. The explosives are ignited from the head of the armature,
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Figure 2: Stages of HFCG operation: a is establish initial current, b is magnetic flux compres-
sion

forcing it to expand. The expanding armature, forming a conical plane moving
along the length of the generator, reaches the stator and sequentially shorts out
the turns of the stator.

3 Review of the Methods for HFCG Description

Let us consider the main approaches to the description of HFCG operation. In
view of (4), we have

I
dL

dt
+ L

dI

dt
+RI = 0. (5)

The solution to (5) is

I = I0
L0

L
e−

∫
R
Ldt. (6)

All electrotechnical models, as a rule, can be reduced to equation (5), though
the methods used to calculate the inductance or the resistance may vary. But
the models based on the solution of the equations of magnetohydrodynamics are
fundamentally different. The models based on (5) are called zero-dimensional
(0D) when the inductance and resistance are defined by certain functions of time,
and one-dimensional (1D) when the inductance and the resistance are certain
functions of the coordinates along the HFCG axis and are calculated at every
integration step.

A two-dimensional HFCG model was suggested in [6] and described in [2].
The current-carrying elements of the HFCG are decomposed as shown in Fig. 3
(see [6]). The helical FCG is decomposed into equivalent z- and θ current-carrying
circuits. The stator-armature-load electric circuit consists of a coaxial part and
z-circuits connected to the load.

The stator is decomposed into N number of rings equal to the number of the
solenoid turns, through which the load current flows in the azimuthal direction,

4



inducing the axial magnetic field Bz
z ; the coaxial part of the generator produces

the field Bθ. To correctly describe the θ-current in the armature, which is induced
by a changing current Iz in the stator, let us consider several separate θ circuits
taken as separate rings equal in number to the number of the solenoid turns, N ,
as shown in Fig. 3, and arranged in the equivalent electric circuit as shown in
Fig. 4). The current Iθi induces the axial magnetic field Bθ

z .

Figure 3: Schematic diagram of HFCG analysis. Decomposition of the stator and the armature
into θ and z current-carrying circuits

Figure 4: Equivalent electric circuit for θ and z current-carrying circuits.

The system of equations given in [6] for the decomposed circuits has the form
(7) and (9).

For the load circuit

Lz
dIz
dt

+
N∑
i=1

(
Miz

dIθi
dt

+ Iθi
dMzi

dt

)
+

(
Rz +

dLz
dt

)
Iz = 0, (7)
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where Lz is the stator inductance, Miz is the mutual inductance between the i-th
ring of the armature and the stator, and Iθi is the current in the i-th ring of the
armature.

Rz = Rl
z +Rz

z +Rp
z +Rload, (8)

where Rl
z is the resistance of the armature to current Iz, Rz

z is the resistance of
the stator, Rp

z is the resistance describing the proximity effect, which is allowed
for when the diameter of the stator wire is less than the coil pitch because of the
insulation, and Rload is the resistance of the load.

For θ-circuits, we write N number of equations:

Lθi
dIθi
dt

+Miz
dIz
dt

+ Iz
dMiz

dt
+

N∑
j=1(j 6=i)

(
M θ

ij

dIθj
dt

+ Iθj
dM θ

ij

dt

)
+

(
Rθ
i +

dLθi
dt

)
Iθi = 0,

(9)
where i = 1, 2, 3, ..., N is the number of θ-circuits, Lθi is the inductance of the
i-th ring of the armature, M θ

ij is the mutual inductance of the armature rings,
and Rθ

i is the resistance of the i-th ring of the armature.
For a better understanding of equations (7) and (9), let us represent them in

a compact form:

d

dt

LzIz +
N∑
j=1

M θ
j,zI

θ
j

 = −RzIz (10)

and
d

dt

M θ
i,zIz +

N∑
j=1

M θ
i,jI

θ
j

 = −Rθ
i I
θ
i , i = 1...N, (11)

where M θ
i,i = Lθi is the self-inductance of the i-th ring if j = i.

B.M. Novac et al. [6] have considered the problem of the stator turns switching
off after the closure of the armature. In this model, the number of stator turns
is the same as the number of the armature rings. When the stator turn is closed,
the opposite-lying armature ring is eliminated from the system of equations (7)
and (9). The currents in the circuits are recomputed so that the magnetic fluxes
before and after the elimination of the turn and the armature ring will be equal.

An interesting model for magnetic flux loss simulation was developed by Kiuttu
and co-workers in [8,9], where the magnetic field diffusion into the conductor was
considered. By approximating the nonlinear magnetic diffusion and comparing
it with the flux compression rate one can identify some distinct regions in the
vicinity of the moving contact point, which are separated by the critical and
transition points. At the critical point, the rate at which the magnetic flux is
pushed ahead by the expanding armature is almost equal to the rate of flux
diffusion into the conductor, and so the magnetic flux after the critical point is
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wasted for compression. Transition point is the point behind which the stator
turn-armature proximity effects are more important than the turn-to-turn effects.
These effects lead to arising effective resistance as described by Kuittu. This
approach seems promising because it allows taking account of the magnetic flux
loss at the contact point for magnetohydrodynamical, 0D, and 1D models. The
resistance at the contact point, as defined by Kuittu, is derived from theoretical
considerations and enables one to describe specific HFCGs, but it does not agree
with the conclusions and computations made in [7].

The idea suggested and substantiated in [7] is that the magnetic flux losses are
concentrated in the vicinity of the moving contact point and are not related to
resistance, as only taking this approach, one can simultaneously match both the
output voltage and the current of the HFCG with its parameters. The authors
of [7] propose to describe the magnetic flux loss, called the intrinsic loss, using
the following equation for the HFCG:

I · α · dL
dt

+ L
dI

dt
+ IR = 0, (12)

where α is the flux loss parameter, varying within the interval from 0 to 1. It
is also stated that though the flux losses cannot currently be computed numeri-
cally, one can approximate them by the flux loss parameter α and that the losses
occur only after the appearance of the moving contact point between the stator
and the armature. In the present paper, a different approach is applied to the
consideration of magnetic flux losses. Using this approach, one can with satisfac-
tory accuracy describe HFCGs of completely different designs and with various
stators on the basis of the physical theory and pre-experimental data alone, and
thus predict the results of the experiments.

4 Basic Formulas. Governing Equations

In the present paper, a two-dimensional model of the HFCG, based on the model
described in [6], is developed. For correct computation of the current distribution
in the armature, we used the following decomposition: the stator is decomposed
into the turns and the armature is decomposed into the rings, which are assigned
the equivalent current-carrying circuits (see Fig.5). Each equivalent circuit is
assigned the self-inductance Li = Mii and the resistance Ri. In this case, the
system of equations for equivalent circuits takes the form:

n∑
j

Mij
dIj
dt

+
n∑
j

dMij

dt
Ij +RiIi = Ui, (13)

where Ui is the voltage produced in the circuit as a part of the electric circuit
(galvanic coupling between the turns of the stator), and Mij is the mutual induc-
tance between the equivalent circuits i and j; here i, j = 1...n, where n is the
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Figure 5: Decomposition of the HFCG elements into the equivalent current-carrying circuits,
Iz is the current in the stator-armature-load electric circuit, Iθj is the current in the armature
rings, Iθzi are the θ-currents in the stator turns after it has contacted the armature and has been
eliminated from the stator-armature-load electric circuit

total number of the current-carrying circuits. In solving the system of equations
(13), we assume that the rings of the armature and the metal cup are not con-
nected with zero voltage across them. The voltage across the load equals the total
voltage of the stator turns

N∑
i=k+1

Ui = Uload, (14)

where k is the number of the stator turns switched out of the electric circuit and
at the initial time, k equals zero. The voltage Ui across the turns switched out of
the electric circuits is zero.

To solve the system of equations (13), let us recast it in the form:

M11
dI1
dt +M12

dI2
dt + ... = −dM11

dt I1 −
dM12

dt I2 − ...−R1I1 + U1

M21
dI1
dt +M22

dI2
dt + ... = −dM21

dt I1 −
dM22

dt I2 − ...−R2I2 + U2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(15)

The dependent variables are canceled out; in the elements outside the electric
circuit, the unknown quantities Ui are either switched out or equated to zero:

Lz
dIz
dt +Mz,N+1

dIN+1

dt + ... = −
∑N

i=1
dMi1

dt I1 −
∑N

i=1
dMi2

dt I2 − ...−RzIz
Mz,N+1

dIz
dt +MN+1,N+1

dIN+1
dt + ... = −dMN+1,1

dt I1 − dMN+1,2

dt I − ...−RN+1IN+1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(16)
where Lz =

∑N
i=1Mii,Mzi =

∑N
j=1Mji, and Rz =

∑N
i=1Ri are the quantities

characterizing the stator included into the stator-armature-load electric circuit,
Lz is the stator inductance, Miz is the mutual inductance between the i-th circuit
of the armature ring and the stator, and Rz

z is the resistance of the stator. We
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thus obtain the system of rank n−N+k+1, where N is the number of the stator
turns; for k = 0 (all the stator turns are included into the electric circuit), the
system has rank n−N + 1, with n being the number of HFCG current-carrying
circuits. When the first stator turn is switched out of the electric circuit, and
k = 1:

M1,1
dI1
dt +Mz,1

dIz
dt +M1,N+1

dIN+1
dt + ... = −dM1,1

dt I1 − dM1,2

dt I − ...−R1I1
M2,1

dI1
dt + Lz

dIz
dt +Mz,N+1

dIN+1

dt + ... = −
∑N

i=2
dMi1

dt I1 − ...−RzIz
MN+1,1

dI1
dt +Mz,N+1

dIz
dt +MN+1,N+1

dIN+1
dt + ... = −dMN+1,1

dt I1 − ...−RN+1IN+1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(17)
To take account of the load in the electric circuit and the coaxial part of the

HFCG, let us add the inductance of the load (Lload = const) and the inductance
of both the armature and the metal cup (Lzline) to the inductance of the stator; we
shall also add the resistance of the load (Rload) and the armature and the metal
cup (Rline) to current Iz to that of the stator. Then the system of equations takes
the form:

(Lz + Lload + Lzline)
dIz
dt +Mz,N+1

dIN+1
dt + ... =

= −dLzline
dt Iz −

∑N
i=1

dMi1

dt I1 −
∑N

i=1
dMi2

dt I2 − ...− (Rz +Rline +Rload)Iz
Mz,N+1

dIz
dt +MN+1,N+1

dIN+1
dt + ... = −dMN+1,1

dt I1 − dMN+1,2

dt I − ...−RN+1IN+1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(18)

From (18) we find the derivative of current for each of the circuits and restore
the currents in the circuits using Euler’s method:

Ii = I0i + h ∗ dIi
dt
, (19)

where h is the time step. The Euler method is applied twice: The resistance
is computed for each current-carrying circuit and then the current is computed
for each circuit. The average resistance of each circuit during the time step is
computed and then the current in each circuit is re-computed.

The main differences of the model proposed here from that described in [6] are
as follows:

• The armature is decomposed into a substantially larger number of rings than
the number of rings in the stator;

• Account is taken of the arbitrary geometric dimensions of the stator and the
metal cups on the HFCG ends;

• The part of the HFCG behind the contact point is modeled instead of being
ignored;
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• The stator turn at the contact point is decomposed into smaller parts to
achieve higher accuracy of modeling;

• The developed model naturally takes into account the intrinsic flux losses;

It should be noted that for the described two-dimensional model, the term dLz
dt

in (7) can be put equal to zero in the case when in HFCG modeling neither the
stator rings are displaced nor their radii are changed. In the considered model this
occurs spontaneously, since the circuit eliminated from the electric circuit remains
there as a free current-carrying circuit. This is basically different from the model
proposed by Novac and co-authors [6], where the elimination problem leads to a
nonzero value of the term dLz

dt because the current is deliberately eliminated from
the closed turns of the stator, while the associated magnetic flux is artificially
re-distributed.

5 The Moving Contact Point Model and the Intrinsic Flux
Losses in the HFCG

The region of the moving contact point was modeled in [7]. The obtained result
showed that the current changed direction after passing the contact point, flowing
from the stator into the armature. Let us check the result against the model of
the HFCG as a whole.

Let us project the current on the HFCG axis. This gives us the coaxial part
of the HFCG. Let us now project the currents on the plane perpendicular to
the axis. The projections of the currents coincide with the currents flowing in
the equivalent circuits after the decomposition of the HFCG conducting elements
(Fig.5).

As is seen in Fig. 5, the stator turns are closed through the armature behind
the contact point, and hence θ-currents may flow through the turns. In terms
of magnetic diffusion, we have two circular rings with adjacent surfaces, through
which the opposite currents flow. The characteristic time for the observed skin
depth of 2 · 10−4 m is from 1 to 10 microseconds. The same or longer time is
required for current compensation, which is comparable to the HFCG operating
time. Thus, the idea of a rapid current attenuation behind the contact point
does not describe a real physical picture of HFCG operation. The idea of slow
current attenuation is confirmed by indirect simulation of HFCG using (13) and
computing the current density distribution over the HFCG conductors [12]. At
the moment of the turn closure, the current in the turn is the same as the current
in the stator and is further calculated by the system of equations (13). The
armature ring stops after it has contacted the stator, and does not move until
the computations are over, so the closed stator turn is switched out of the stator-
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Figure 6: Intrinsic flux loss, the lost magnetic flux

armature-load electric circuit. In the model presented here the closed turn of the
stator is considered as an independent circuit connected to the rest of the circuits
via the magnetic field. The sum of the mutual magnetic flux of the closed stator
turn and the opposite armature rings of the HFCG behind the contact point is
much smaller than the intrinsic magnetic flux of the stator turn or the armature
ring. Hence, the assumption that the armature ring and the stator turn are fixed
after the closure does not significantly affect the results of computation.

When the stator turn is closed and switched out of the stator-armature-load
electric circuit, the magnetic flux linked to it is lost, which includes the flux of the
turn itself and the fluxes of other turns of the stator and of the armature rings.
What remains is the mutual flux between the switched turn and the operating
part of the stator (Fig. 6). Thus, for calculating the losses, one needs to consider
the flux of the stator and the armature behind the contact point. For HFCGs with
superconducting generators, this sum flux is equal to zero. In a real HFCG, the
stator turns and the armature rings have different current densities, as well as the
ohmic losses, and so the magnetic flux in the HFCG behind the contact point is
larger the larger is the difference between the losses in the stator and the armature.
In the model described in [6], the magnetic flux is artificially redistributed from the
closed turns of the stator into the HFCG part in front of the contact point, leading
to an erroneous representation of the current distribution over the armature and
disregard of the intrinsic flux loss.

6 One-Dimensional Model with Regard for the Intrinsic
Flux Loss

Let us distinguish the magnetic flux Lz in the stator conductor. Recast (5) as

I
dL

dt
+ L

dI

dt
+RI +

dLz
dt

I = 0, (20)
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which includes the flux taken away by the turns. The solution of (20) for HFCG
current has the form:

I = I0
L0

L
e−

∫
R
Ldt−

∫
dLz
dt

1
Ldt. (21)

7 Inductance

For a two-dimensional model, one needs to calculate both the self-inductances of
equivalent circuits and the mutual inductances between them. Equivalent circuits
are presented as circular loops with geometrical mean distance gi between the
area of the wire cross section and itself [3]. In this case, the inductance of each
circuit is defined by:

L = µ0R

[
ln

(
8R

g

)
− 2

]
, (22)

where µ0 is the permeability of vacuum, R is the radius of the equivalent circuit
(equals the distance between the center of the circuit and the wire axis), and g
is the geometrical mean distance between the area of the wire cross section and
itself. The geometrical mean distance is calculated by formula given in [3]

ln(g) =
1

s1s2

∫∫
s1s2

ln(η)ds1ds2, (23)

where η is the distance between the elementary areas ds1 and ds2. The inte-
gration procedure is as follows: each of the variables ds1 and ds2 is integrated
with respect to one another throughout the entire area and the procedure is re-
peated. If supposed that a high-frequency current flows in equivalent circuits and
is uniformly distributed over the surface, then the geometrical mean distance for
the stator turn circuits equals gi = d

2 , d being the diameter of the stator turn
wire [3]. For the armature rings and the metal cup rings, the logarithm of the
geometrical mean distance between the area cross section and itself equals

ln(g) = ln(ξ + 0.0002) + ln(0.2236), (24)

where ξ is the width of the armature rings and the metal cup rings and 0.0002
is the depth δ of the fixed skin-layer in meters (see Fig. 7).

The skin depth can be calculated for the given initial conditions: the HFCG
design, and when heating is important the initial seed current is considered. For
the solution stability of the system of HFCG equations, the skin depth is con-
sidered as a fixed value, and for ξ considerably larger than the skin depth, the
approximation error is negligibly small. Account of the variations in the skin

12



depth has little effect on the value of the current derivative and only matters for
HFCGs with significantly varying mean operating frequency. Assuming that the
symmetry axis of the circuit passes through the middle of the fixed skin depth one
can eliminate the proximity effects of the stator wires from the consideration and
suppose that the current is uniformly distributed over the surface of the stator
turns.

The mutual inductance between two equivalent circuits of the stator turns is
calculated as a mutual inductance between two infinitely thin circuits through a
series representation [3]. The mutual inductance between the circuits of the rings
of the armature and that between the circuits of the rings of the metal cup, as
well as between the circuits of the armature ring or the metal cup ring and the
stator turn is calculated from the geometrical mean distance.

7.1 Calculation of Mutual Inductance Between Equivalent Circuits
from Geometrical Mean Distance

When the equivalent circuits of the armature and the cup, as well those of the
armature rings and the stator turns are closely spaced, it is important that the
geometrical dimensions of their cross sections be considered, which is achieved by
taking account of the geometrical mean distance between the cross sections of the
two circuits.

The mutual inductance between the equivalent circuits of the rings is calcu-
lated as a mutual inductance between two infinitely thin circuits, coinciding with
the symmetry axes of the cross section of the current-carrying conductor. The
distance between the circuits wires equals the geometrical mean distance between
the cross sections of the two circuits(Fig. 7 and Fig. 8).

Figure 7: Equivalent circuits for mutual inductance calculation
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The circuits of the armature rings and the metal cup rings are represented as
the rings of an infinitely thin strip of width ξ. This approximation is correct for
skin depths δ considerably less than the width ξ.

Figure 8: Calculation of mutual inductance between the circuits of the armature rings and the
metal cup rings from geometrical mean distance

Thus, we calculate the geometrical mean distance between the cross sections
of the armature rings and/or the metal cup rings (fig. 8). The mutual inductance
of the circuits is taken equal to mutual inductance of two infinitely thin circuits
whose radii are the same as the distance between the center of the ring and the
symmetry axis of its cross section. The infinitely thin circuits are arranged so that
the shortest distance between them is the same as the geometrical mean distance
between the adjacent cross sections of the rings [3]. The geometrical mean distance
between the cross sections of the armature rings and/or the metal cup rings is the
geometrical mean distance between two segments (fig. 8). The geometrical mean
distance between the cross sections of the stator turn and the armature rings or
the metal cup rings is calculated as the geometrical mean distance between the
point on the symmetry axis of the cross section of the stator turn and the segment
of the cross section of the armature ring or the ring of the metal cup.

7.2 Decomposition of a Multiwire Stator with Symmetrical Wires
into Current-Carrying Elements

The approach that we suggest is based on the decomposition of a stator formed by
symmetrically arranged wires for the simplification of the computation procedure
and reduction of errors in calculating the inductance of the stator. Let us make
use of this fact that in the stator coil formed by several wires wound together and
arranged symmetrically with each other, the same current passes through every
wind due to symmetry.

14



Figure 9: Decomposition of a multiwire stator with symmetrical wires

The stator turns are decomposed as follows: every wind has the same number
of equivalent circuits as the number of winds. The dimensions of the equivalent
circuits are assumed to be equal to the dimensions of the stator turn (the turn
diameter and the wire diameter), as shown in Fig.9. In modeling HFCG operation,
it should be taken into account in electrotechnical equations that the current
passing through the obtained circuits is n times smaller than the current Iz.
When the HFCG consists of the sections with different winds and wire diameters,
every section is decomposed separately in consecutive order and is considered in
the system of equations (13).

7.3 Decomposition of the Stator Turn into Parts of Equivalent Cir-
cuits and Computation of their Inductance in the Vicinity of a
Moving Contact Point

Decomposition of the stator turns into equivalent circuits provides a helpful tool
for describing the HFCG operation. At the final stage of HFCG operation, switch-
ing the circuit of the stator turn out of the stator-armature-load electric circuit
leads to an appreciable change in the inductance of the HFCG stator, which re-
sult in a poorer modeling accuracy. For this reason, it is advisable that a more
exact computation of the inductance be performed at the final stage of HFCG
operation, when only several (ten or fewer) turns remain in the stator. The exact
calculation of the stator inductance is performed by dividing the equivalent circuit
of the stator turn into parts at the contact point. This is made for both a single
wind and several symmetric winds. With this aim in view, one can use [3]:

M14 =
1

2
(L14 − L1 − L4) , (25)

where M14 is the mutual inductance of the two contacting parts of the wire that
lie on the line curved along the circular arc; L14 is the inductance of the considered
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Figure 10: Decomposition of the stator in the vicinity of a moving contact point

segment of the arc 14; L1 and L4 and the inductances of its parts; and

M12 =
1

2
(L142 + L4 − L14 − L42) , (26)

where M12 is the mutual inductance of the two non-contacting parts of the wire
that lie of the line curved along the circular arc; L142is the inductance of the wire
142; L4 is the inductance of part 4; L14 is the combined inductance of parts 1 and
4; and L42 is the combined inductance of parts 4 and 2. The inductance of the
wire composed of three parts is [3]

L = L1 + L4 + L2 + 2 (M14 +M42 +M21) , (27)

where L is the inductance of part 142. The formula for calculating the self-
inductance of the wire curved along the circular arc [3] reads:

L = Z −G+ A−Q, (28)

where Z depends only on the shape and size of the wire axis, G,A,Q depend on
the wire cross section and the current distribution pattern over the cross section; G
also being dependent on the length of the wire axis. If we neglected the quantities
of the order of g

2Rm
and g

l with l being the wire length and Rm, the least radius
of curvature of the wire axis, then (28) can be written in the form:

L = Z −G (29)

and
Z =

µ0R

2π

[
θ (ln 8R− 2)− 4I ′ + 4 sin

θ

2

]
, (30)
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where θ is the angle subtending the arc of length equal to the total length of the
wire, while

I ′ = −

θ
4∫

0

ln tanϑ1dϑ1, (31)

and
G =

µ0l

2π
ln g. (32)

Thus, using the contact point, it is possible to divide the equivalent circuit of the
turn into parts and define their self- and mutual inductances.

The contact point divides the equivalent circuit of the turn of a single-wire
stator into two parts, one of which is included into the common stator-armature-
load electric circuit, while the other one is switched out of the circuit and is
considered as a free circuit interacting with other circuits via the magnetic field
(Fig. 10). Using the above formulas, let us calculate self-inductances of the parts
of the turn and mutual inductances between them and other circuits.

By way of example, let us consider a three-wire stator; similar calculations
for the case of a multiwire stator can be easily made by generalizing the above
theorems and formulas. Because for symmetric winds of the stator we used the
above-described method of division into the turns, the contact point divides the
equivalent turns into number 2n parts (Fig. 10).

Thus, using the above approach, one can define the self-inductance of a part
of the stator turn bounded by a moving contact point (Fig. 10) in the stator-
armature-load electric circuit as follows:

L = 3L1 + 6M12, (33)

outside the circuit
L = 3L4 + 6M45. (34)

The mutual inductance between the parts equals:

M = 3M15 + 6M14. (35)

7.4 Inductance of the Coaxial Part of the HFCG

It is important that in HFCG operation, the coaxial inductance of the stator that
is associated with current Iz should be considered.

Though this inductance is small, it is vital to consider it at the final operation
stage, when a few turns are left in the circuit, and small inductance values, which
can be neglected at the initial stage, play an important role.

The projection of the current Iz on the HFCG axis is equal to itself (see a similar
fluid flow problem in hydrodynamics). The stator is replaced by an equivalent
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cylinder, with current Iz flowing along its axis (Fig. 11), which is furnished with a
metal cup having a diameter approximately equal to the diameter of the equivalent
cylinder. The cylinder wall is assumed to be infinitely thin, and the current density
is uniformly distributed over its surface. The radius of the equivalent cylinder is
assumed to be equal to the inner radius of the stator.

Figure 11: Inductance of the stator for the current projected on the HFCG axis

The self-inductance of the equivalent cylinder can be found in a similar manner
as the inductance of a straight wire. Here the geometrical mean distance between
the cross sections of the cylinder and itself equals its radius.

L =
µ0l

2π
(ln(

2l

r
− 1)), (36)

where r and l are the radius and the length of the cylinder, respectively. The
self-inductance of the armature is determined similarly.

It is possible to consider a stator with a liner in the form of a coaxial cable. In
this case, the inductance of the HFCG part with a pipe-shaped armature and that
of the HFCG part with a cone-shaped widening armature should be calculated
separately.

Ll = Lk + Lm, (37)
where Lk is the inductance of the HFCG with a cone-shaped armature and Lm
is the inductance of the HFCG with a pipe-shaped armature; the HFCG part
behind the contact point is dropped from the consideration.

The inductance for the current projection on the HFCG axis can be found with
known magnetic flux:

Lzline =
1

i2

∫
s
Φdi, (38)

where Φ is the magnetic flux, which equals

Φ =

∫
S
BdS. (39)

HereB is the magnetic field inductance, S is the area of the closed current-carrying
circuit with current i. Then we have

Lzline =
1

i2

∫
s

∫
S
BdSdi. (40)

18



When the symmetry of the coaxial part of the HFCG is taken into account, its
inductance in cylindrical coordinates can be found by formula given in [6]

Lzline =
µ0
2π

∫ l

0

∫ rstat(z)

rarm(z)

1

r
drdz, (41)

where rarm(z) is the radius of the armature, rstat(z) is the radius of the stator,
z is the length of the coaxial part of the HFCG.

8 Errors Related to Neglecting the Stator Helicity

When the stator helicity is taken into account, the current Iz can be decomposed
into two components: along the OZ-axis, which is the generator’s axis, and in the
XY-plane. The projection of the current on the XY-plane equals the current Iz
and so does its projection on the OZ-axis.

Figure 12: Decomposition of the current Iz into the current azumuthal along the OZ-axis (the
HFCG axis) and the current in the XY-plane

Neglecting the stator helicity, one can readily find the inductance of the turn
in the XY-plane by formula (22).

Let us evaluate the helicity effect on the calculations of the stator inductance.
For the case of uniform distribution of the current density over the wire cross
section, the formula for calculating the self-inductance can be written as follows:

L =
1

s2

∫∫
s1s2

Mkds1ds2, (42)

where
M =

µ0
4π

∫∫
dl1dl2 cos θ

D
. (43)

Here it is assumed that θ is the angle between the length elements dl1 and dl2 in
the XY-plane. For rings

D = 2R sin
θ

2
, (44)

with due account of the helicity

D =

√(
(2R sin

θ

2

)2

+

(
h

2π
θ

)2

, (45)
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where h is the coil pitch.
Disregarding the helicity of the stator in finding the mutual inductance between

the stator turns, we have

D =

√(
2R sin

θ

2

)2

+ (nh)2, (46)

where n = |i− j| and nh is the distance between the centers of the turns i and j
when the coil pinch is constant.

When the helicity is taken into account, we have:

D =

√(
2R sin

θ

2

)2

+ (nh)2 +

(
h

2π
θ

)2

;
θ

2π
≤ 1. (47)

From the above formulas follows that when the effect of the stator helicity on
the self-inductance of the turn is strong, this effect should be checked against the
difference between the self-inductance of the ring and the turn having a pitch
h, which enables one to check the approximation accuracy when the turns are
replaced by the rings.

9 Resistance

9.1 Skin Layer

The skin-layer technique is the most common method for calculating the HFCG
resistance. This method is based on the assumption that the total current uni-
formly flows through the plate of thickness equal to the skin depth (see Fig. 13).
The skin depth δ can be found by formula

ρ

δ
= k

√
dI(t)
dt

I(t)
, (48)

where ρ is the specific resistance (1.72 · 10−8 copper) and k =
√
µ0ρ is the coeffi-

cient, which for copper equals 1.47 · 10−7. The resistance of the circuit is defined
by the formula for the resistance of the ring:

R =
2πrρ(1 + αTT )

dδ
, (49)

where r is the radius of the circuit, d is the wire diameter (metal), αT is the
temperature coefficient (0.0043 for copper), and T is the temperature (it always
equals zero when heating is ignored)

A similar resistance model for the circuits of the armature ring and the metal
cup ring is defined by:

R =
2πrρ(1 + αTT )

δ · ξ
, (50)
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Figure 13: The schematic representation of the resistance calculations using the skin-layer
technique

where ξ is the width of the armature ring and the metal cup ring (in the general
case, they can differ).

To find the resistance Rline of the armature and the metal cup to current Iz,
let us add together the corresponding resistances of the armature rings and the
metal cup rings to the current flowing in the direction of the OZ-axis:

Rline =
ξ · ρ(1 + αTT )

π(dδ + δ2)
, (51)

where π(dδ+ δ2) corresponds to the area of the ring of radius r and the width δ.

9.2 Nonlinear Magnetic Diffusion

In this subsection, we have found the HFCG resistance from depth distribution
of the current density in the stator turns and the armature rings. The current
density distribution was determined from the equations for nonlinear magnetic
diffusion into an infinite conducting plate [4]:

∂Hz

∂x
= − 1

ρ0(1 + βQ)
Ey = −j, (52)

∂Ey

∂x
= −µ0

∂Hz

∂t
, (53)

∂Q

∂t
= (1 + βQ)ρ0

(
∂Hz

∂x

)2

. (54)

The initial conditions are as follows:
x = 0 : Hz(0, t) = H0(t), t ≥ 0,
t = 0 : Hz(x, 0) = 0, x ≥ 0.
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Rewrite (54) using (52)

∂Q

∂t
= (1 + βQ)ρ0j

2, (55)

and (53) using (52)
∂(ρ0(1 + βQ)j)

∂x
= −µ0

∂Hz

∂t
. (56)

Let us write a more detailed expression for a partial derivative:

jβρ0
∂Q

∂x
+ ρ0(1 + βQ)

∂j

∂x
= −µ0

∂Hz

∂t
. (57)

Here the initial and final conditions are as follows: x = 0 :
∂Hz(0, t)

∂t
= f(t), t ≥ 0;

t = 0 : Hz(x, 0) = 0, j(x, 0) = 0, Q(x, 0) = 0, x ≥ 0.
Let us take a flat plate of thickness d

2 and width d (Fig. 14), but we shall
consider that the magnetic field is diffused into the infinite plate of finite thickness.

In the absence of an external magnetic field, the magnetic field strength near
the plate surface is [5]:

H =
i

2
, (58)

where i is the surface current density. The partial time derivative is

∂H

∂t
=

1

2

∂i

∂t
. (59)

Let H0 denote the magnetic field strength in front of the plate in the case of an
external magnetic field when a zero total magnetic field behind the plate

H0 = i. (60)

Take a time partial derivative
∂H0

∂t
=
∂i

∂t
. (61)

Divide the plate into n number layers of thickness hx (Fig. 14).
The time derivatives of the magnetic field strength in the adjacent layers of

the plate are related as follows:

∂Hk

∂t
=
∂H0

∂t
−

xk∫
0

∂jk
∂t
dx ≈ ∂H0

∂t
− hx

k∑
p=1

∂jp
∂t
. (62)

Define the boundary condition on the plate surface as

∂H0

∂t
=

1

d

∂I

∂t
, (63)
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Figure 14: Schematic representation of the plate division

Figure 15: Difference scheme

where
∂I

∂t
, the current derivative in the equivalent circuit, is given in the computer

code for HFCG calculations. The formula for the difference scheme can be written
in the form:

ρ0βjk+1
Qk+1 −Qk

hx
+ ρ0(1 + βQk+1)

jk+1 − jk
hx

= −µ0(
∂H0

∂t
− hx

k∑
p=1

∂jp
∂t

). (64)

From this one can find
∂jk
∂t

for k = 1..n− 1 and determine the nod values of
current density in the next time step. For k = n

∂jk
∂t
hx =

∂H0

∂t
− hx

n−1∑
p=1

∂jp
∂t
. (65)

Since this difference scheme exhibits poor convergence and requires the use of
very small integration steps, for the above formulas we shall write the difference
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Figure 16: The difference scheme for the implicit Euler method

scheme for the implicit Euler method:

ρ0βj
t+ht
k+1

Qt
k+1 −Qt

k

hx
+ρ0(1+βQt

k+1)
jt+htk+1 − j

t+ht
k

hx
= −µ0(

∂H0

∂t
−hx

k∑
p=1

jt+htp − jtp
ht

).

(66)
Upon multiplying by ht

µ0hx
and transposing the terms containing the current density

of the time step t+ ht, the left-hand side of (66) takes the form:

ht
µ0hx

ρ0βj
t+ht
k+1

Qt
k+1 −Qt

k

hx
+

ht
µ0hx

ρ0(1 + βQt
k+1)

jt+htk+1 − j
t+ht
k

hx
−

k∑
p=1

jt+htp . (67)

On the right-hand side of (66), we have:

− ht
hx

∂H0

∂t
−

k∑
p=1

jtp. (68)

The difference scheme for the implicit Euler method is given in Fig. 16. Solving
the obtained system of inhomogeneous linear equations, one can find the current
density derivatives in each layer of the plate. Let us estimate the resistance.
The formulas used in electric engineering for calculating resistance in parallel
conductors are not applicable because they require determining the resistance
which occurs in the plate layers due to the magnetic field change. The active
resistance describes dissipative processes in the system, hence the resistance in
the circuit can be determined with known energy losses. Then for the general
case, we can write:

Qt+ht
total −Q

t
total = RI2ht =

n∑
k=1

(
Qt+ht
k,total −Q

t
k,total

)
, (69)

where Qt
total is the electromagnetic field energy that has passed through the con-

ductor during time t, ht is the integration time step, and k is the subscript num-
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bering the plates in the ring

R =

∑n
k=1

(
Qt+ht
k,total −Qt

k,total

)
I2ht

. (70)

In the integral representation of the energy equation [4] two types of field losses
are distinguished:

−
∫
S

Pds =

∫
V

∂

∂t
(Q+W )dV, (71)

where ∂Q
∂t = ρj2 is the Joule loss, j is the current density, ∂W∂t = H∂B

∂t = ∂
∂t

(
1
2µH

2
)

is the change of the electromagnetic field energy, andP = (E×H) is the Poynting
vector, i.e, the energy flux passing through the surface.

Express the derivative of the magnetic field energy in terms of the surface
current density:

∂W

∂t
= H

∂B
∂t

= iµ
∂i

∂t
. (72)

For each plate layer with the current, we can write

W t+ht
k −W t

k

ht
= Hk

∂Bk

∂t
= ikµ

∂ik
∂t
. (73)

Using (55), let us find the energy released through Joule heating

Qt+ht
k = Qt

k +

t+ht∫
t

(1 + βQt
k)ρ0

(
jtk
)2
dt. (74)

Application of Simpson’s rule for numerical integration gives

Qt+ht
k = Qt

k+(1+βQt
k)ρ0ht

(jtk)2 + 4

(
jtk +

∂jt+htk

∂t

ht
2

)2

+

(
jtk +

∂jt+htk

∂t
ht

)2
 /6.

(75)
Finally, we have for the resistance:

R =

n∑
k=1

(
Qt+ht
k −Qt

k +W t+ht
k −W t

k

)
I2ht

. (76)

The obtained formula shows that the heating losses can be determined from the
current density distribution. When the resistance is found from the skin depth,
the losses related to the diffusion of the magnetic field into the conductor should
be included along with the Joule losses. Thus, the accurate calculation of heating
and temperature values seems to be more complicated.
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Figure 17: Electrotechnical scheme of the proposed 2D model

Figure 18: HFCG electric field strength calculation

10 Voltage and Electric Field Strength in the HFCG

Upon calculating Ui from the system of equations (13), one can find the voltage
across each equivalent circuit of the stator turn. As is seen from the schematic
diagram of the HFCG (Fig. 17), summation of the voltages across the turns with
respect to the armature gives the stator-armature voltage over the HFCG length.
The voltage produced by the current Iz in the armature can be neglected because
it only amounts to several per cent of the voltage across a single turn, being as
small as the calculation error for the voltage across the turns in the vicinity of
the contact point in a two-dimensional model. With known voltage across the
stator turns, one can make a map of the electric field strength for the stator-liner
field upon calculating the distance between the wires of the turns. This distance
is determined with regard for the size of the wire and the position of the liner at
each instant of time Fig. 18.

11 The Model of HFCG Seeding. Plastic and Metal Cups.

Seed sources of different types are used for feeding the HFCG: capacitor banks,
storage batteries, and other HFCGs. We shall consider the option where a ca-
pacitor bank is used as a seed source for its simplicity. The capacitor bank is
charged first and then discharged into the HFCG via the connectors, thus causing
the current gain in the HFCG. After high explosives are ignited, the stator or the
metal cup is connected to the armature, the HFCG operates independently of the
capacitor bank.

Let us distinguish two HFCG designs according as a metal or plastic cup is
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used. For the case of a metal cup with the length comparable to the diameter of
the stator, the armature gets connected to the metal cup far from the stator, and
the derivative of the HFCG inductance is less than the losses in the circuit, so the
current decreases. The current starts to increase when the vertex of the armature
cone reaches the stator.

From the viewpoint of electrical technology, the case when a plastic cup is
used is similar to that without a metal cup. The stator is connected to the arma-
ture at the first turn. It occurs at the moment when feeding from the capacitor
bank is stopped, and the bank continues feeding the HFCG until the armature
is connected to the stator. The HFCG inductance changes during the seeding
process, and the current derivative is usually positive (of the same sign). In this
case, there is an option of whether to calculate the HFCG inductance from the
magnetic flux or from the magnetic energy. These methods give different results
for the derivative of the HFCG inductance, and the difference is most significant
during the seeding process. For this reason, an accurate model of the process of
seeding the HFCG with a plastic or a metal cup would enable one to choose a
more appropriate method of the two, thus demonstrating its advantages.

12 Conclusion

This paper describes a two-dimensional model of a helical FCG, based primarily
on fundamental physical principles. The experimental results have been described
for various HFCG designs and operation parameters with an accuracy within in-
strumental error. The idea stated in [7] that the intrinsic losses in the magnetic
flux are not of resistive character has been confirmed and the physical explana-
tion for these losses has been suggested, as well as the method of their calculation.
The model of nonlinear diffusion of the magnetic field into the conductor and the
model of resistance have been developed. It has been shown that the magnetic
field diffusing into the conductor is the source of magnetic flux losses, which en-
hance the resistance of the conductor, and the resulting resistance equals the
resistance of the conductor calculated using the skin-depth technique. It has also
been demonstrated that the method of elimination of the stator turns from the
system of equations (7), (9) and re-calculation of the current in the turn is redun-
dant. The proposed model of the moving contact point enables one to demon-
strate the mechanism of the intrinsic flux losses and present a physically correct
two-dimensional model of a helical FCG for the description and anticipation of
experimental results.

However, some processes in a two-dimensional model are simplified, thus limit-
ing its application, for example, for the description of an HFCG whose stator coil
has widely-spaced turns with inter-turn spacing comparable to the diameter of the
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coil wire. In this case, one should use a three-dimensional HFCG model, which
correctly accounts for the current density distribution over the wire cross section.
It should be noted that the resistance of the stator turns can differ as much as
by a factor of three, depending on the distance to the contact point, though the
average resistance of the turns is practically constant, which follows from the
problems solved in a 3D model [12]. Development of a valid three-dimensional
model for HFCG description is the next step in theoretical analysis of HFCGs.
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