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Some Aspects of Chaotic Lasing in Volume Free Electron
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Chaotic dynamics in Volume Free Electron Lasers (VFEL) is excited by signi�cant
perturbation in movement of electrons through resonator and by deformation of bunches
leading to generation of higher harmonics in the system and vice versa. Analysis of phase
electron dynamics are presented to explain origin of chaos in VFEL. Investigations presented
are attempts to display origin of steady-state stationary and oscillatory VFEL regimes and
demonstrate structure of electron bunches originating when electron beam passing through
photonic crystal in VFEL.
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1. Physical principles of VFEL

We consider interaction of relativistic
electron beams with three-dimensional periodical
structures in Volume Free Electron Lasers
(VFEL).

The main principle of vacuum electronic
devices such as travelling wave tubes (TWT),
backward wave tubes (BWT) [1], [2], free electron
lasers (FEL) [3] is based on radiation of bunches
of charged particles moving over the surface or
through the slow-wave system (resonator). Under
conditions of synchronism they begin to transform
kinetic energy of charged particles to energy
of electromagnetic radiation. In TWT, BWT,
orotrons and other analogous devices a ribbon-
like or annular electron beam is used. This is
explained by the fact that the e�ective distance
d of beam interaction with the surface of the
slow-wave system is determined by the following
formula: d =

λβγ

4π
, where γ is the Lorentz factor

of electron beam, β = u/c, u is a beam velocity,
c is velocity of light. If e.g. we estimate the wave
length as λ = 1 cm and β = 0.8, then we obtain
d ∼ 0.1 cm. This leads to signi�cant restriction
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on device power.
Moreover in considered types of devices an

interaction of moving forward electrons in a
bunch with a stream of energy of electromagnetic
waves occurs usually under one-dimensional
distributed feedback. I.e. electrons in bunches and
electromagnetic waves spread along one straight
line: in one direction or in opposite directions.
Here an estimation for the beam threshold current
is the next [1], [3]:

jstart ∼ 1
(kL)3

, (1)

where k is a wave number, L is a resonator length.
The new law of instability for an electron

beam passing through a spatially-periodic target
under di�raction in degeneration points were
proposed in [4], [5]. There is shown that the
increment of such instability increases essentially
in comparison with the single-wave system.
Analogous to (1) estimation in this case is the
following:

jstart ∼ 1
(kL)3+2s

,

where s is a number of surplus waves appearing
in the system because of di�raction. This means
the noticeable reduction of electron beam current
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density necessary for achievement the generation
threshold in comparison with other devices and
feasibility of resonator miniaturization.

Established physical mechanism [4], [5] is
universal and valid for all wavelength ranges
regardless the spontaneous radiation mechanism.
On these physical principles a new type of
electronic devices was proposed to create [5]-[7].
Its name is Volume Free Electron Laser. The
basic di�erence of VFEL from di�erent types of
electronic devices is the availability of volume
(non-one-dimensional) distributed feedback when
an electron beam and some strong coupled
electromagnetic waves spread angularly one
to other in the system under di�raction in
degeneration points. By assignment of system
parameters VFEL can operate in regimes of TWT
or BWT. Moreover in VFEL there is no restriction
on using broad (in cross-section) electron beams.

As a slow-wave system (a spatially-periodic
resonator) natural crystals for X-ray wavelength
range [6] or arti�cial structures (so-called
photonic crystals) for other ranges [7], [8] can be
used.

First lasing of VFEL in mm wavelength
range obtained recently [9]. Further experimental
VFEL investigation is continued in cm wavelength
[10], [11].

Common scheme of two-wave VFEL is
depicted in Fig.1. Here an electron beam with
electron velocity u and electron density nb passes
through a photonic crystal of the length L. Under
di�raction conditions two strong electromagnetic
waves can be excited in the resonator. If
simultaneously electrons are under synchronism
condition, they emit electromagnetic radiation in
directions depending on di�raction conditions.

2. VFEL basic equations

The linear stage of interaction of electron
beams with periodical structures investigated
analytically [5], [6] quickly changes into the
nonlinear one where most of the electron
beam energy is transformed into electromagnetic

radiation. System of equations describing such an
interaction is obtained from Maxwell equations in
the slowly-varying envelope approximation.

Let us consider two-wave geometry depicted
in Fig.1. Electric �eld strength E and electron
beam current density j are considered in the form:

E = eσ(Eei(kr−ωt) + Eτe
i(kτr−ωt)),

j = eσjei(kr−ωt).

(2)

Here eσ is a vector of sigma polarization [12], ω
is a frequency. τ is a reciprocal lattice vector. k,
kτ = k + τ are wave vectors of electromagnetic
waves that are under di�raction conditions:

2kzτz ≈ −2k⊥τ⊥ + τ2.

Electromagnetic wave with vector k is called
transmitted and one with vector kτ is di�racted.
E and Eτ are complex-valued amplitudes of these
waves.

It was proposed here that the electron beam
is synchronous with the transmitted wave E only.
This means the following synchronism condition
is ful�lled:

|ω − ku| ≤ δω,

where δ is detuning from exact synchronism
condition.

So, we obtain the following system of
equations describing electromagnetic �eld
dynamics in VFEL:

∂E
∂t

+ γ0c
∂E
∂z

+ 0.5iωlE − 0.5iωχτEτ = I,

∂Eτ
∂t

+ γ1c
∂Eτ
∂z

+ 0.5iωχ−τE − 0.5iωl1E = 0.

(3)

Here γ0, γ1 are distributed feedback cosines
having form γ0 = kz

k
, γ1 = kτz

k
, l = l0 + δ,

l0,1 =
(
k2·,τc2 − ω2ε0

)
/ω2. ε0 = 1+χ0, χ0, χ±τ are

Fourier components of the dielectric susceptibility
of resonator. Right-hand side I in (3) is described
below.

Initial and boundary conditions for the
system (3) depends on coupled waves directions
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FIG. 1: Two-wave VFEL.

and can have di�erent forms including external
re�ectors. Their simplest form is the following:

E(t, z = 0) = E0, Eτ (t, z = L) = 0,

E(t = 0, z) = 0, Eτ (t = 0, z) = 0.
(4)

System (3)�(4) must be supplemented by
equations of phase dynamics of electron beam.

Let us use the method of averaging
over initial phases of electrons that is well-
known [2] and widely used in simulation of
electronic vacuum devices [13]. We consider
magnetized electron beam which propagation can
be considered as one-dimensional. We introduce
function Θ(t, z, p) describing the phase of electron
beam relative to electromagnetic �eld. Moreover
let us take into consideration as initial phase
of an electron not only the moment of time t0
of an electron entrance in resonator at z = 0
but also transverse spatial coordinate in this
moment. In simulation of TWT, BWT etc.
(see e.g. [13]) because of considering ribbon-like
electron beams there is no necessity to take
into account transverse spatial coordinate of an
electron entrance in the slow-wave system. So,
our approach is more complicated but it allows
to simulate broad in cross-section electron beam
dynamics.

Initial phase is an individual mark of the
electron in the beam. Phase of each electron
emerged in resonator at the moment t0 can be

presented as

Θ(t, t0, r⊥) = kzz + k⊥r⊥ − ωt(z, t0),

where t(z, t0) is a trajectory of electron passing
through resonator. At its beginning z = 0 initial
phase has the form:

Θ(t = t0, t0, r⊥) = k⊥r⊥ − ωt0 = Θ1 −Θ0 = p.

where Θ0,Θ1 ∈ [0, 2π], p ∈ [−2π, 2π]. We
consider below only combination of these initial
phases Θ1 −Θ0. Averaging over this combination
phase allows to pass from microscopical
description to macroscopical one.

Motion equation for each electron has the
form:

dp
dt

= e

{
E +

1
c

[v ×H]
}

, p = mγv,

where e and m are electron charge and mass
respectively.

Performing some transformations and taking
into account that

v =
1
dt
dz

,
dv

dt
= −

d2t

dz2(
dt

dz

)3 ,
dt

dz
= − 1

ω

(
dΘ
dz

− kz

)

we obtain �nally:

d2Θ
dz2 = eΦ

mγ3ω2

(
kz − dΘ

dz

)3

· Re
(
EeiΘ

)
,

dΘ(t, 0, p)
dz

= kz − ω/u, Θ(t, 0, p) = p,

(5)
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where Φ =
√

l0 + χ0 − 1/(βγ)2.
In (3)�(5) t > 0, z ∈ [0, L], p ∈ [−2π, 2π].
Let us determine right-hand side of (3) I.

From Maxwell equations using (2) it is the next

I = −2πi

ω

(
eσ

∂j
∂t

)
e−i(kr−ωt). (6)

Beam current can be represented as a sum
over each electron in the beam:

je−i(kr−ωt) =
∑

α vαe−i(k⊥r⊥+kzz−ωt)

×δ(r− rα)θ(t− t0α)θ(T0α − t),

where t0α is the moment of time of α-th electron
incoming in resonator, T0α is the moment of
electron departure from resonator. δ(r− rα) is δ-
function, θ(t) is θ-function.

Let us average expression (6) over electron
phases Θ0 and Θ1:

I = 2πj0Φ
∫ 2π

0

dΘ1

2π

∫ 2π

0

dΘ0

2π
e−iΘ(t,z,Θ1−Θ0),

(7)
where j0 = enbu. This averaging is correct
because of law of conservation of particle number
which having form:

jdt = j0dt0.

So, Liouville Theorem of conservation phase
volume can be applied. Finally right-hand side of
(3) has the following form:

I = 2πj0Φ
∫ 2π

0

2π − p

8π2
(exp(−iΘ(t, z, p)

+ exp(−iΘ(t, z,−p))) dp,

(8)

Transition from (7) to (8) can be obtain by
decomposition of plane �gure into integral sums
well-known in mathematical analysis.

Numerical methods for solving (3)�(5) and
its versions nonlinear stage simulation were
proposed [14], [15]. They are implemented
in computer code VOLC [17]. Di�erent
VFEL geometries were investigated [14]�[19]
numerically. All numerical results are in good

agreement with analytical predictions and
experimental results [11], [8]. The main result of
numerical simulations is numerical validation of
all main VFEL physical theoretical principles.

3. Steady-state solution

Let us try to obtain solution of the system
(3)�(5) on reaching steady-state regime. We �nd
such solution in two-mode form:

E = C1e
ikδ1z + C2e

ikδ2z,

Eτ = s1C1e
ikδ1z + s2C2e

ikδ2z,

j = j1e
ikδ1z + j2e

ikδ2z.

(9)

Substituting (9) into (3)�(4) we obtain for each
mode the following system for roots of dispersion
equation δn and unknown coe�cients Cn and sn:

sn =
χ−τ

l1 + 2γ1δn
,

δn = (−(l1γ0 + lγ1 − γ1j̃n)± ((l1γ0 + lγ1

−γ1j̃n)2 − 4γ0γ1(ll1 − r − l1j̃n))1/2)/(4γ0γ1),

C1 =
−E0s2e2

s1e1 − s2e2
, C2 =

E0s1e1

s1e1 − s2e2
,

j̃n = 2Φjn/Cn, en = eikδnL, r = χτχ−τ ,
n = 1, 2.

(10)

When jn = 0 we obtain exact solution of two-wave
di�raction problem in resonator. If jn(t) = const
then the solution (9) is found stationary. If jn(t) 6=
const solution (10) is not valid. But it allows
to treat situation when we deal with smooth
recon�guration of this solution with respect to
z and steady-state oscillations with respect to
t. In computer animation this looks like as the
solution "breathes". In the next section examples
of computer simulation illustrate such behavior.
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FIG. 2. Time-dependent amplitudes for transmitted
(black line) and di�racted (grey line) waves for L=9
cm and j =3 kA/cm2

FIG. 3. Amplitudes for transmitted (black line),
di�racted (grey line) waves and absolute value of
(8) (light grey line) inside the resonator at the last
moment of time for L=9 cm and j =3 kA/cm2.

4. Some numerical results

Investigation of origin of chaos in electronic
vacuum devices is very topical in modern
physics [13], [20]�[22]. We met with oscillations
during VFEL investigation too. In VFEL reasons
of initiation of chaotic dynamics remain the
same as in other electronic devices: non-uniform
distribution of intensity of electromagnetic �eld
and �eld of spatial charge of electron beam
leading to signi�cant perturbations in movement
of electrons through resonator. This results to
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FIG. 4. Time-dependent electron phase in a wave at
z=9 cm for L=9 cm and j =3 kA/cm2.
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FIG. 5. Electron phase in a wave inside the resonator
at the last moment of time for L=9 cm and j =3
kA/cm2.
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FIG. 6. Time-dependent amplitudes for transmitted
(black line) and di�racted (grey line) waves for L=32
cm and j = 500 A/cm2.
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FIG. 7. Amplitudes for transmitted (black line),
di�racted (grey line) waves and absolute value of
(8) (light grey line) inside the resonator at the last
moment of time for L=32 cm and j = 500 A/cm2.

FIG. 8. Time-dependent amplitude for transmitted
wave inside the resonator for L=32 cm and j =500
A/cm2.

reduction of average velocity of electrons and
to deformation of bunches during overtaking
some electrons by other ones, to strati�cation
of electron beam etc. The higher harmonics of
these �elds and their combinations are excited
and raised. This leads to chaos in the system.

Investigation of chaos in VFEL is important
in the light of experimental development of
VFEL. In [15]�[19] a gallery of di�erent
chaotic regimes for VFEL laser intensity with
corresponding phase space portraits, attractors
and Poincaré maps was proposed. There are
periodic, quasiperiodic regimes and chaotic self-
oscillations. Bifurcation points corresponding
to transitions between di�erent regimes of
generation were investigated the same as the
largest Lyapunov exponents and sensibility of
the system behavior to initial conditions. It
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FIG. 9. Time-dependent electron phase in a wave at
z=6.5 cm for L=32 cm and j = 500 A/cm2.
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FIG. 10. Time-dependent electron phase in a wave at
z=13 cm for L=32 cm and j = 500 A/cm2.

was analyzed dependence of chaotic lasing on
the following couples of parameters: electron
beam current and factor of asymmetry, beam
current and detuning from exact synchronism
condition, beam current and resonator length.
Corresponding parametric maps were presented.

Analytical investigation of chaos in VFEL
seems to be impossible because of nonlinearity
of the system of equations formative VFEL
mathematical model. In the paper presented the
chaotic behavior in two-wave VFEL ampli�er was
investigated for the following set of parameters:
wavelength λ = 3 cm, L = 9, 20, 32 cm, j = 500
and 3000 A/cm2.

First example is an example of stationary
process for L = 9 cm and j = 3 kA/cm2.
Corresponding plots are presented in Fig. 2 �
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FIG. 11. Time-dependent electron phase in a wave at
z=19 cm for L=32 cm and j = 500 A/cm2.
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FIG. 12. Electron phase in a wave inside the resonator
at the last moment of time for L=32 cm and j =
500A/cm2.
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FIG. 13. Time-dependent amplitudes for transmitted
(black line) and di�racted (grey line) waves for L=20
cm and j = 500 A/cm2.
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FIG. 14. Amplitudes for transmitted (black line),
di�racted (grey line) waves and absolute value of
(8) (light grey line) inside the resonator at the last
moment of time for L=20 cm and j = 500 A/cm2.
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FIG. 15. Time-dependent electron phase in a wave at
z=8 cm for L=20 cm and j = 500 A/cm2.
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FIG. 16. Time-dependent electron phase in a wave at
z=20 cm for L=20 cm and j = 500 A/cm2.
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FIG. 17. Electron phase in a wave inside the resonator
at the last moment of time for L=20 cm and j =
500A/cm2.

Fig. 5. Time-dependent amplitudes for
transmitted and di�racted waves in Fig. 2
demonstrate achievement of steady-state
stationary regime. So, if we try to animate
in time solution inside the resonator (see Fig. 3)
this animation is static (immovable). This is a
case jn(t) = const provided bunching electrons
in two bands (structures) with phase shift equal
to 2π. This is obvious from Fig. 4 and Fig. 5. In
time (Fig. 4) these structures are moving very
slowly.

Next simulation was carried out for the
following set of parameters: L = 32 cm and j =
500 A/cm2. It is depicted in Fig. 6 � Fig. 11.
This is an example of large-scale amplitude
regime. Description of large-scale and small-
scale amplitude regimes were given in [18], [19].
Here this example was chosen to demonstrate
electron bunching down to approximately 18
cm (see Fig. 7, 9, 11). Phase structures are
changing in time very quickly in comparison
with previous example. After that, destruction of
these structures passes. Inside resonator electrons
bunch in two wide structures that are destroyed
further (see Fig. 12). It indicates that electrons
gave all possible energy to electromagnetic wave
and left wave synchronism. Fig. 7 and Fig. 8
illustrate discussion of previous section that when
jn(t) 6= const solution oscillates.

Fig. 13 � Fig. 17 correspond to parameter
set L = 20 cm and j = 500 A/cm2. This is
an example of small-scale amplitude regime. Here
again electrons bunch in time till approximately
17 cm (see Fig. 14, Fig. 15). This fact con�rms
that e�ective resonator length for not great beam
current is equal approximately to 6 wave lengths
[11]. Destruction of bunches begins at exit of
resonator (Fig. 16). Inside the resonator two
structures are shaped again (Fig. 17). One of them
then passes to other. These structures are not so
wide as in the case of L = 32 cm but not so narrow
as in the �rst case at L = 9 cm.

5. Conclusion

Since VFEL physical principles di�er from
ones using in other electronic vacuum devices we
deal with a new subject of inquiry. So, each step in
investigation of its nonlinear dynamics will pro�t
some new results.

Investigation of nonlinear dynamics of
electron beam instability in VFEL showed the
complicated nature of such interaction leading to
intricate changing of regimes of operation under
changing of control parameters. Full describing of
features of such dynamics is extremely laborious
because of presence of many control parameters.
But such investigations are in progress and
will be useful for providing experiments on the
installations created at the Research Institute for
Nuclear Problems of Belarusian State University.

Investigations presented are attempts to
display origin of steady-state stationary and
oscillatory VFEL regimes and demonstrates
structure of electron bunches originating when
electron beam passing through photonic crystal
in VFEL.

Author thanks Prof. V. G. Baryshevsky for
permanent interest to her work. This work was
supported by Belarusian Republican Foundation
for Fundamental Research, grant No. F07V-001.
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