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Simulation and comparison of one-dimensional and volume distributed feedback in mi-
crowave vacuum electronic devices were accomplished. The first situation corresponds to
conditions of backward-wave tube. The second one is the generation of radiation by rel-
ativistic electron beam in photonic (electromagnetic) crystal in conditions of Volume Free
Electron Laser (VFEL). Obtained numerical results demonstrate that there exists an optimal
set of parameters for effective generation and it is not located in one-dimensional geometry.
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1. Introduction

The main aim of this paper is simulation of
processes of radiation generation by relativistic
electron beam in photonic (electromagnetic) crys-
tal in conditions of Volume Free Electron Laser
(VFEL). In VFEL when relativistic electron beam
passing through photonic crystals in conditions of
dynamical diffraction, quasi-Cherenkov paramet-
ric radiation appears [1], [2]. According to special
law valid only for VFEL [1]–[5], under diffraction
in degeneration points the threshold current of
electron beam obeys the following estimation:

jstart ∼ 1
(kL)3+2s

(1)

where s is a number of surplus waves appearing
in the system because of diffraction. k is a wave
number, L is a length of photonic crystal.

This law is valid for all wavelength ranges
and substantially differs from its analogues for
electronic devices such as travelling wave tubes
(TWT), backward-wave tubes (BWT), free elec-
tron lasers (FEL) etc. For any other electronic
vacuum device except for VFEL there isn’t de-
pendence of thereshold condition on the number
of surplus waves appearing in the system due to
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FIG. 1: VFEL with grid resonator.

diffraction. For BWT, TWT, FEL as well as for
different types of cyclotron masers, Cherenkov
plasma oscillators and other devices the beam
threshold current is with power 3 [6]–[8] instead of
3+2s in denominator like in estimation (1) given
above.

(1) means the noticeable reduction of elec-
tron beam current density necessary for achieve-
ment the generation threshold in comparison with
other devices and actual feasibility of setup minia-
turization.

In vacuum electronic devices an interaction
of moving forward electrons in a bunch with a
stream of energy of electromagnetic waves occurs
usually under one-dimensional distributed feed-
back where electrons and electromagnetic waves
spread along one straight line: in one direction
(TWT) or in opposite directions (BWT). The
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main feature of VFEL is non-one-dimensional vol-
ume distributed feedback (VDFB) where all elec-
tromagnetic waves and vector of electron velocity
are situated angularly one to another.

Theory and experiments of VFEL were de-
veloped in [1]–[5], [10]–[12]. Recent experiments
are carried out on INP VFEL setup with so-called
grid resonator [12]. Such resonator is a tube with
a system of metallic treads strained inside res-
onator with special periods (see Fig.1). In [10] it
is demonstrated that such resonator is an exam-
ple of photonic crystal [13], [14]. [15] was devoted
to investigation of Cerenkov radiation arising in
photonic crystals. In [16] proposed photonic Free
Electron Lasers (pFEL) are based on Cerenkov
radiation in photonic crystals. It is obvious that
VFEL is a version of pFEL with additional special
features like (1) and others [4].

In [17]–[22] VFEL was investigated numeri-
cally and examined as dynamical chaotic system.
All main VFEL physical laws as well as genera-
tion thresholds for INP VFEL experimental se-
tups were obtained numerically. It was demon-
strated that there exists an optimal set of VFEL
parameters for effective generation. A gallery of
different chaotic regimes for VFEL laser intensi-
ty with corresponding phase space portraits, bi-
furcation diagrams, attractors and Poincare maps
was proposed. It was denoted the necessity of tak-
ing into account the dispersion of electromagnetic
waves on photonic crystal for microwave VFEL.

In this paper we compare results of sim-
ulation of one-dimensional distributed feedback
in conditions of BWT and volume (non-one-
dimensional) distributed feedback in VFEL. We
chose parameters of one-dimensional geometry
corresponding to backward Bragg diffraction.
Then we change them by varying transverse com-
ponents of wave vector k and reciprocal lattice
vector with the aim to found parameters for more
effective generation.

t

photonic crystal

FIG. 2: Common scheme of VFEL.

2. VFEL basic equations

Let us consider VFEL with grid resonator
in which two-wave geometry of diffraction is real-
ized (see Fig.1). In Fig.2 a model of such two-
dimensional system is given. Here an electron
beam with electron velocity u and electron cur-
rent density j0 passes through a photonic crystal
(resonator) of the length L.

Electromagnetic field is described as follows:

E(r, t) = e(Eei(kr−ωt) + Eτe
i(kτr−ωt))

where e is vector of polarization. E and Eτ are
complex-valued amplitudes of two strong electro-
magnetic waves with wave vectors k and kτ =
k + τ excited in the resonator under diffraction
conditions. First one is transmitted wave, second
one is diffracted wave. Here τ is reciprocal lattice
vector of photonic crystal. ω is frequency.

If simultaneously electrons are under syn-
chronism condition with transmitted wave: |ω −
ku| ≈ 0, they emit electromagnetic radiation in
directions depending on diffraction conditions.

In [17] the system of equations describing
electromagnetic field dynamics in VFEL for two-
wave geometry was suggested. In [18] it was con-
sidered three-wave case. Electron beam dynamics
is simulated via method of averaging over initial
phases of electrons [9]. This method is well-known
and widely used in simulation of microwave elec-
tronic vacuum devices [6].
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FIG. 3: Annular electron beam.
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FIG. 4: Ribbon electron beam.

The majority of microwave electronic de-
vices use annular or ribbon electron beams [6]
(see Fig.3 and Fig.4). Such beams interact with
the slow-wave system or the surface of resonator
and should pass over the surface at small distance

d ≤ λβγ

4π
, where γ is the Lorentz factor of elec-

tron beam, β = u/c, c is velocity of light. In sim-
ulation of such systems method of averaging over
initial phases of electrons [9], [6] doesn’t take into
account transverse coordinates of electron coming
in the resonator but only the moment of entrance.

There exist different types of VFEL [4]: with

x

y

z

v

e
-

FIG. 5: Wide electron beam.

annular or ribbon electron beams or with wide
in cross-section electron beam (see Fig.5). In the
last case in [17] it was demonstrated the necessi-
ty of consideration both the moment of electron
entrance in resonator (as in [9], [6]) and the trans-
verse coordinates of its coming there. But in two
first types of electron beam it is not out of place
to consider this too.

Let us adduce derivation of expression for
beam current density from equations for electro-
magnetic field and its transition to well-known
micro-wave dynamics equations [6].

So, introducing phase of electron coming in
resonator at moment of time t0 Θ(t, t0, r) we con-
sider the combination of two initial phases Θ1 and
Θ0:

Θ(t = t0, t0, r⊥) = k⊥r⊥ − ωt0 = Θ1 −Θ0 = p
(2)

where Θ0,Θ1 ∈ [0, 2π], p ∈ [−2π, 2π]. Averag-
ing over this combination of phases allows to pass
from microscopical description of electron beam
to the macroscopical one:

J = j0

∫ 2π

0

dΘ1

2π

∫ 2π

0

dΘ0

2π
e−iΘ(t,z,Θ1−Θ0), (3)

Further reduction of (3) can be obtain by
decomposition of plane figure into integral sums
well-known in mathematical analysis. Let us in-
troduce regular grid with step ∆ϑ: N∆ϑ = 2π
when N →∞. Then
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∫ 2π

0
dΘ1

∫ 2π

0
dΘ0e

−iΘ(t,z,Θ1−Θ0) ≈
N∑

k=0

N∑

j=0

e−iΘ((j−k)∆ϑ)∆ϑ2 (4)

=
N∑

k=0

(e−iΘ(k∆ϑ) + e−iΘ(−k∆ϑ))(N − k)∆ϑ2 ≈
∫ 2π

0
(e−iΘ(t,z,p) + e−iΘ(t,z,−p))(2π − p)dp.

If we neglect the transverse phase Θ1 as in [9], [6],
the transformation chain (3):

N∑

k=0

N∑

j=0

e−iΘ((j·0−k)∆ϑ)∆ϑ2 (5)

=
N∑

k=0

e−iΘ(−k∆ϑ)N∆ϑ2 ≈ 2π

∫ 2π

0
e−iΘ(t,z,−p)dp.

leads immediately to well-known right-hand side
of micro-wave dynamics equations [6].

So, from Maxwell equations in slowly-
varying amplitudes approximation the system of
equations describing nonlinear stage of VFEL op-
eration of the following form is derived:

∂E
∂t

+ γ0c
∂E
∂z

+ 0.5iωlE − 0.5iωχτEτ = I,

∂Eτ
∂t

+ γ1c
∂Eτ
∂z

+ 0.5iωχ−τE − 0.5iωl1E = 0,

I = j0Φ
4π

×
∫ 2π

0
(2π − p)

(
e−iΘ(t,z,p) + e−iΘ(t,z,−p)

)
dp,

∂2Θ(t, z, p)
∂z2 = eΦ

mγ3ω2

(
kz − ∂Θ(t, z, p)

∂z

)3

×Re
(
E0(t− z/u, z)eiΘ(t,z,p)

)
,

Θ(t, 0, p) = p,
∂Θ(t, 0, p)

∂z
= kz − ω/u.

Here t > 0, z ∈ [0, L], p ∈ [−2π, 2π]. γ0 =
kz
k

, γ1 = kτz
k

are distributed feedback cosines.

l = l0 + δ, l0,1 =
(
k2·,τ c2 − ω2ε0

)
/ω2. ε0 =

1 + χ0, χ0, χ±τ are Fourier components of the
dielectric susceptibility of resonator. δ is de-
tuning from exact synchronism condition. Φ =√

l0 + χ0 − 1/(βγ)2).
Boundary conditions for the system can have

different forms including external reflectors [17].
Their simplest form corresponding to Fig.2 is the
following:

E(t, z = 0) = E0, Eτ (t, z = L) = 0.

3. Results of numerical simulation

In this article we examine the influence of
non-one-dimensional distributed feedback to dy-
namics of VFEL generation. We compare two-
dimensional Bragg geometry (see Fig.6, dashed
lines) with one-dimensional backward geometry.
Its wave vectors are shown in solid lines in Fig.6.
As initial data we take the following parameters
of grid resonator [12]: length L = 15 cm with
thread period on axis z 12.5 mm, the generation
frequency 10.4 GHz, beam current density j0 =
300 A/cm2.

In Fig. 7 it is shown the time dependence
of amplitudes of transmitted wave (lower curve)
and diffracted wave (upper curve) at the outlet
of resonator in BWT geometry for the value of
the detuning from synchronism condition δ = 0.
One can see that these dependencies are almost
periodic (weak chaos).

Everywhere below we will consider the wave
amplitudes at the outlet of photonic crystal.

Let us consider dependence of wave ampli-
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FIG. 6. Scheme of BWT geometry (solid lines) and
two-dimensional Bragg geometry (dashed lines).
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FIG. 7. Time dependence of amplitudes of transmitted
wave (lower curve) and diffracted wave (top curve) in
one-dimensional backward geometry.

tudes on changes of diffraction geometry param-
eters kx and τx in the case δ = 0 (Fig.8) as well
corresponding parametric maps of chaotic lasing
(Fig.9). We see very smooth dependencies (Fig.8)
with small absolute values of amplitudes. Para-
metric maps (Fig.9) contain only a strip of sta-
tionary generation along the generation threshold,
periodical and weak chaotic regimes. Two spots
of periodicity are on the field of weak chaos for
transmitted wave. And one spot of chaos is situ-
ated near the origin of coordinates for diffracted
wave.

Then let us change a little the value of de-
tuning from synchronism condition δ. Such de-
viation exists always. It is impossible to satisfy

x

a

t

x

b

FIG. 8. Amplitudes for transmitted (a) and diffracted
(b) waves when changing kx and τx. δ = 0.

synchronism condition exactly. The changing of
δ to positive values gives the same pictures as in
Fig.8 and Fig.9. Negative values of δ leads to more
interesting results given below.

In Fig.11 dependence of wave amplitudes
on changes of diffraction geometry parameters kx

and τx is shown. We see that for τx = 0 symmet-
rical pattern of generation when changing kx to
the right and to the left of zero shifts and trans-
forms with increasing of τx values till 1.5. There
are essentially large absolute values of amplitudes
than in previous case (Fig.8). At BWT geometry
for kx = 0 and τx = 0 there are small values of
amplitudes in comparison with other points.

In Fig.11 parametric maps of VFEL dynam-
ical regimes are given for two parameters of ge-
ometry: τx and kx. On edges of maps the most
typical dependencies of electromagnetic field in-
tensities |E(t, L)| and |Eτ (t, 0)| on time (in ns)
are presented.

Unlike the previous parametric maps ob-
tained in [20], [22] as well as given in Fig.9, in
Fig.11 we have a strip of chaotic self-oscillations
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a

b

FIG. 9. Parametric maps of chaotic lasing for trans-
mitted (a) and diffracted (b) waves when changing
τx and kx. δ = 0. 0 depicts domain under generation
threshold. P and C correspond to periodic regimes and
chaos, respectively.

along the generation threshold, then it changes
into the strip of intermittency and the strip of
transition between large-scale and small-scale am-
plitudes in Fig.11. In the center of maps there are
overlaps of periodic, quasiperiodic and different
chaotic regimes.

It is obvious that all maps for diffracted wave
are less variegated, with the smaller number of
main frequencies than for transmitted one. This
is numerical validation of one important VFEL
physical feature consisting in suppression of spu-
rious modes inside the resonator. Due to mecha-
nism of VDFB in conditions of diffraction in res-
onator not all parasitic frequencies arising in elec-
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b

FIG. 10. Dependence of wave amplitudes on changes of
diffraction geometry for transmitted (a) and diffracted
(b) waves.

tron beam moving through resonator are passed
from the electron beam to the transmitted electro-
magnetic wave and all the more to the diffracted
one. This was demonstrated numerically earlier
for other cases in [22].

In Fig.12 for data corresponding to Fig.10
transition between dynamical regimes for kx = 0
and six values of τx are presented. This series of
plots shows mostly chaotic oscillations for trans-
mitted wave (plots 1,a–5,a) and for diffracted
wave (4,b), (5,b), as well as periodic and quasi-
periodic oscillations (1,b)–(4,b), (6,a), (6,b).

System parameters kx = 0 and τx = 1.5
gives results under generation threshold.

Now let us change the value of transverse
component kx = −0.5. In Fig.13 plots for dynam-
ical regimes for seven values of τx are present-
ed. In this case periodic regimes are dominant.
The values of amplitudes for kx = 0 (Fig.12) and
kx = −0.5 (Fig.13) differ from more than two
times till one order.

Nonlinear Phenomena in Complex Systems Vol. 15, no. 4, 2012
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FIG. 11. Parametric maps of chaotic lasing for transmitted (a) and diffracted (b) waves when changing τx

and kx. 0 depicts domain under generation threshold. P, Q, C correspond to periodic, quasiperiodic regimes
and chaos, respectively. M corresponds to transition between large-scale and small-scale amplitudes. I describes
intermittency.

(a) (b)

FIG. 12. Transition between dynamical regimes for transmitted (a) and diffracted (b) waves under changing of
τx. kx = 0. (1): τx = 0.9; (2): τx = 1.0; (3): τx = 1.1; (4): τx = 1.2; (5): τx = 1.3; (6): τx = 1.4.
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(a) (b)

FIG. 13. Transition between dynamical regimes for transmitted (a) and diffracted (b) waves under changing of
τx. kx = −0.5. (1): τx = 0.9; (2): τx = 1.0; (3): τx = 1.1; (4): τx = 1.2; (5): τx = 1.3; (6): τx = 1.4; (7): τx = 1.5.

Thus, we can conclude that variation from
one-dimensional to non-one-dimensional geome-
try leads to changing in the type of dynamical
solution. So, the choice of VFEL geometry can im-
plement periodic dynamics rather chaotic regime.

4. Conclusion

As VFEL physical principles differ from ones
of other vacuum electronic devices VFEL is an
interesting object of investigation with specif-
ic characters, suitable for generation of power-
ful electromagnetic radiation in different wave-
length ranges. In VFEL simulation different sides
of VFEL nonlinear dynamics were investigated
with the object of its experimental investigation.

It was demonstrated that multi-dimensional vol-
ume distributed feedback in VFEL can give more
large values on amplitudes than one-dimensional
distributed feedback. The possible way of chaos
control in VFEL can be realized via changing of
VDFB geometry.
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