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1. INTRODUCTION

The conversion of the kinetic energy of an electron beam into radiation energy underlies the operation
of many electronic devices. They include traveling wave tubes (TWT), backward wave tubes (BWT), and
free electron lasers (FEL). The electromagnetic generators and amplifiers available at present cover wave-
lengths from the microwave to the ultraviolet vacuum range [1–4]. FEL lasing in the ultraviolet range has
been obtained relatively recently on the basis of self-amplified stimulated emission (SASE). Despite the
success achieved in this area, there are many problems to be solved. One of them is that the generation fre-
quency cannot be tuned in a wide spectral range. As a rule, high-efficiency lasers have optimal preliminarily
designed parameters (such as electron beam characteristics, the waveguide and resonator sizes, the undula-
tor and grating periods, modulation, etc.). Variations in any of these parameters as required for frequency
tuning sharply reduce the efficiency of lasing. Another difficulty arises in high power lasing. In the genera-
tion of pulses with power higher than 10 GW, it is highly desirable that the cross section of the electron beam
be large in order to reduce the current density occurring at a high total current. However, when the linear
sizes of the cross section exceed the generated wavelength, a large number of parasitic modes are excited in
the resonator (waveguide), which leads to destructive interference and, as a consequence, to a sharp fall in
the efficiency of the generation.

A possible way of overcoming the above difficulties is to use volume distributed feedback (VDFB) in
volume free electron lasers (VFEL). The principles and theoretical foundations of VFEL operation were laid
in [5, 6]. A major advantage of VFEL is that it provides mode discrimination in an oversized system. The
volume nature of VDFB makes it possible to vary the VDFB geometry or the electron beam position relative
to the structure and to vary the generated wave frequency. VFEL lasing in the millimeter range was first
obtained experimentally at the Institute for Nuclear Problems of Belarussian State University [7].

The linear stage in VFEL operation has been fairly thoroughly investigated to this day. The threshold
generation currents, spectral-angular distributions, and the times of VFEL instability development were
found for various radiation mechanisms (parametric, undulator, Smith–Purcell) [7–21]. In VFEL operation,
the linear stage quickly gives way to the nonlinear stage, at which most of the electron beam energy is trans-
formed into radiation. For this reason, a detailed analysis is required for the nonlinear stage of VFEL, the
regimes of generation, amplification, and regenerative amplification at the nonlinear saturation stage, and
for the influence exerted on these regimes by gradual variations in the VDFB geometry. Computations of
this kind are necessary for experiment design, optimal geometry determination, and result processing.

An analytical analysis can be performed only for the linear stage and some partial features of the non-
linear stage, because mathematical models describing the nonlinear stage of VFEL operation are very com-
plicated. They are given by systems of multidimensional nonlinear integro-differential and partial differen-
tial equations. The boundary conditions specified on the various boundaries of the system can include first-
order partial differential equations unsolved for the time derivatives of several unknown functions. For this
reason, a detailed numerical analysis is required for describing the nonlinear stage of VFEL operation. Prob-
lems of this kind can arise in other areas of physics (e.g., in hydrodynamics, radiation transfer theory),
chemistry, etc. The aforesaid testifies to the importance of this study.

Numerous papers are available that deal with FEL simulation (see [22–25]). Mathematical models of
various VFEL types in the X-ray, optical, and millimeter wave ranges were considered in [26–36]. Earlier,
an electron beam was simulated in the hydrodynamic approximation [26, 27] or the kinetic approximation
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with the use of distribution functions [28–30]. These methods perform well when the electron beam current
density is low but give rise to instability as its magnitude increases, which is explained by possible intersec-
tions of different electron beam trajectories at large current and electromagnetic field values. Following
[36], we model the electron beam by means of the phase averaging method, which has been used earlier in
TWT, BWT, and FEL simulation.

2. PHYSICAL MODEL OF VFEL

The electron beam in VFEL can pass near a three-dimensional periodic structure [14, 15] or through it
[9–11, 18]. In the general case, the Bragg VDFB in VFEL is formed by 

 

n

 

 strongly coupled waves (the so-
called 

 

n

 

-wave Bragg diffraction). In the special case of two-wave diffraction, two fundamentally different
geometries are possible: Bragg geometry with oppositely directed waves and Laue geometry with waves
propagating in the same direction. Figure 1 shows a three-dimensional VFEL scheme in Bragg geometry.
The electron beam with velocity 

 

u

 

 is incident at some angle on a spatially periodic target of thickness 

 

L.

 

Simultaneously, an electromagnetic wave (

 

1

 

) with the frequency 

 

ω 

 

and the wave vector 

 

k

 

 is incident on the
system. If the diffraction conditions are satisfied [37], then a strong diffracted wave (

 

2

 

) with the wave vector

 

k

 

τ

 

 = 

 

k

 

 + 

 

τ

 

, where 

 

τ 

 

is the reciprocal lattice vector, arises in the target. For the beam of electrons to group
into a radiating phase and to generate radiation, it is necessary that the phase velocity of the electromagnetic
wave be somewhat lower than the velocity of the electron beam. The equality between these velocities is
expressed by the well-known Vavilov–Cherenkov condition

 

(1)

 

The typical value of the deviation from (1) is determined by the length of the domain where the electron
beam interacts with the wave (in the case of a weak gain) or by the electron beam density (in the case of a
high gain [10]). Electron beam instability arises under the synchronism conditions and results in the gener-
ation of quasi-Cherenkov radiation. Crystalline plates are used as a target in the x-ray region. In this case,
the spatial period is determined by the crystal lattice period and the radiation generated has a length com-
parable with interatomic distances, i.e., belongs to the X-ray region. An artificial grating or a corrugated
waveguide can be used as a target in the microwave region. A volume periodic system consisting of period-
ically arranged dielectric or metallic filaments was considered in [18].

In Laue geometry, the incident and diffracted waves propagate in the same direction (Fig. 2a). In both
geometries, two waves (waves 

 

1

 

 and 

 

3

 

) with a given amplitude can be incident on the system (in the case of
amplifier simulation). In Bragg geometry, the generator regime is also considered at which there are no
waves incident on the system. We also simulated the case of VFEL with external mirrors, which is schemat-
ically shown in Fig. 1b. Generally, two waves are simultaneously incident on a periodic lattice.

Several operation regimes can be realized in Bragg geometry: (i) the current is lower than a critical value
and no radiation is generated; (ii) when the critical current is reached, a regime is possible at which the inci-
dent electromagnetic waves are amplified by the electron beam (the so-called regime of regenerative ampli-
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fication); and (iii) as the current further increases and exceeds a threshold (

 

j

 

thresh

 

), the generation regime is
established.

In Laue geometry, radiation can be generated even in the absence of an incident wave (Fig. 2b), which
is the so-called SASE regime [38]. The SASE regime in Laue geometry and the generation regime in Bragg
geometry develop from spontaneous noises. The generation regime in a system with Laue geometry
becomes possible after external mirrors are added to the system [17].

In this paper, the nonlinear stage of the VFEL regimes listed above is analyzed by methods of mathemat-
ical modeling.

3. MATHEMATICAL MODEL OF VFEL

The equations describing VFEL operation are deduced from Maxwell equations in the approximation of
slowly varying amplitudes. The first two Maxwell equations yield the single second-order equation

 

(2)

 

where 

 

E

 

 is the electric field strength and 

 

j

 

b

 

 is the current density of the electron beam.
In the case of two-wave diffraction, these quantities are substituted into (2) in the form

where 

 

i

 

 is the imaginary unit and 

 

e

 

σ

 

 is the sigma polarization vector [37].
In the approximation of slowly varying amplitudes, i.e., in the case where

the second derivatives with respect to time and space can be neglected.
The electron beam equations can be obtained in the hydrodynamic approximation, by means of distribu-

tion functions, or with the help of the phase averaging method. In [28–30], the dynamics of an electron beam
were simulated with the help of a kinetic equation and distribution functions in the optical range for the sur-
face VFEL scheme. In this paper, electron beam dynamics in VFEL is modeled by averaging over the initial
electron phases when they enter the interaction region [35]. This method is well known and is widely applied
to the calculation of TWT, BWT, FEL, and other electronic devices.

Let us derive an expression for the electron beam current. The incident magnetic field is assumed to be
such that the beam is magnetized. Electron beam dynamics is one-dimensional. The equation of motion of
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a single electron moving in the wave field is given by

where 

 

γ 

 

is the Lorentz factor of the electron beam, 

 

n

 

 is the normal vector to the target surface, and 

 

k

 

z

 

 is the
projection of the wave vector 

 

k 

 

on the 

 

z

 

 axis. It is not possible to trace the motion of a single electron in the
beam. Every electron can be characterized by its initial phase when entering the domain of interaction. This
initial phase is an individual characteristic of each electron in the beam. Averaging over this phase on the
wavelength makes it possible to proceed from the microscopic to macroscopic description. The current thus
averaged is given by

 

(3)

 

Here, 

 

n

 

0

 

 is the density of particles in the beam, 

 

u

 

 is their initial velocity, Θ(t, t0, r⊥) = kzz + k⊥r⊥ – ωt(z, t0)
is the electron phase in the wave, and t(z, t0) is the trajectory of an electron entering the interaction region
at time t0 . The initial electron phase is given by

In contrast to the undulator system, in which the dynamics of an electron is determined only by the entrance
time t0, in our case, the electron dynamics is also affected by the spatial cross point of beam entrance in the
interaction region Θ1 . Thus, the transition to a macroscopic description is associated with averaging over
two phases. Averaging makes use of the Liouville theorem. In this case, the Liouville theorem is equivalent
to the particle conservation law and is reduced to the following equality in the one-dimensional case:

This equality is very useful for averaging the current on the wave oscillation period. By simple rearrange-
ment, averaging over the phases Θ0 and Θ1 in (6) is reduced to averaging over a single phase p ∈ [–2π, 2π].

Thus, the general mathematical model of a VFEL (Fig. 1) is given by

(4‡)
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where E0 and Eτ0 are the amplitudes of the waves incident on the target. In addition to time, the spatial coor-
dinate z and the electron initial phase p are considered in system (4). The electromagnetic field amplitudes
E(t, z) and Eτ(t, z) and the coefficients a, b, and Φ are complex-valued. The function Θ(t, z, p) describes the
phase of the electron beam relative to the electromagnetic wave. The function Θ and the coefficients Ψ are
real-valued.

At the initial stage of the laser operation, a linear nonstationary process develops that is characterized by
exponentially increasing fields. As the electron kinetic energy is conversed into electromagnetic wave
energy, the velocity of the electrons reduces and the synchronism conditions are violated for them. This pro-
cess occurs at the nonlinear stage. Moreover, the system passes into a steady-state regime. The system

ż̇
e

mγ 3
--------- eσn( )Re a ik⊥r⊥ ikzz iωt–+( )exp{ },=

j
en0u
2π

----------- 1
2π
------ Θ1 Θ0 iΘ t Θ1, Θ0–( )–[ ]exp .d

ω t z/u–( )

ω t z/u–( ) 2π+

∫d

0

2π

∫=

Θ t t0 t0 r⊥, ,=( ) k⊥r⊥ ωt0– Θ1 Θ0.–= =

jdt j0dt0.=

∂E
∂t
------ a1

∂E
∂z
------ b11E b12Eτ+ + + Φj,

∂Eτ

∂t
-------- a2

∂Eτ

∂z
-------- b21E b22Eτ+ + + 0,= =

j
2π p–

8π2
---------------- iΘ t z p, ,( )– iΘ t z p–, ,(–( )exp+[ ]exp{ } p,d

0

2π

∫=

d2Θ t z p, ,( )
dz2

---------------------------- Ψ k
dΘ t z p, ,( )

dz
--------------------------– 

  3

Re E t z/u z,–( ) iΘ t z p, ,( )[ ]exp{ },=

E t 0= 0, Eτ t 0= 0,= =

E z 0= E0, Eτ z L= Eτ0,= =

Θ t 0 p, ,( ) p,
dΘ t 0 p, ,( )

dz
--------------------------- kz ω/u,–= =

t 0, z 0 L,[ ], p 2π– 2π,[ ],∈∈>



670

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 45     No. 4      2005

BATRAKOV, SYTOVA

describing the steady-state regime of VFEL operation takes the form

(5‡)

(5b)

Boundary conditions (4e) and (4f) and the formula for the beam current density (4b) remain unchanged.
Boundary conditions (4e) are written out for the Bragg case (Fig. 1). In Laue geometry (Fig. 2), they are

given by

(6)

In the presence of external mirrors, boundary conditions (4e) are generalized as follows:

Here, αi and ϕi are the amplitudes and phases of the coupling coefficients of the corresponding waves in
reflection.

In the case of external mirrors, the boundary conditions in Laue geometry (6) are specified as

(7)

It is assumed that all the functions are smooth, bounded, and slowly varying.

4. FINITE DIFFERENCE METHODS

In what follows, wherever convenient, we use the notation adopted in [39].
First, we consider a finite-difference scheme for system (4). In the domain

we introduce the uniform grids

Then, we can write down

(8‡)

(8b)

(8c)

where

and cj are the coefficients of the quadrature formula. The integer part of η was used in the computations.

When tl – ηtm < 0, we set  = E(0, zm). The trapezoid rule was used for numerical integration.
For stationary system (5), we propose the iterative algorithm
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(9b)

(9c)

where s = 0, 1, … is the iteration index. We set  = hp j,  = 0, and  = 0 at interior grid points.

Differential equation (9a) can be rewritten as

This is an implicit cubical difference equation in the unknown . When solving this equation, we choose
the root that is close to the neighboring values. The other two roots make no sense. Equation (8a) is solved
in a similar manner.

In all the cases, the boundary conditions can be written precisely.
Laue geometry differs from Bragg geometry by the propagation direction of the diffracted wave. All the

schemes above were written for Bragg geometry (with the right discrete derivative with respect to z written
for the wave Ei). In the Laue case, it should be replaced by the left discrete derivative.

Since finite-difference schemes (8) and (9) are strongly nonlinear, we cannot analyze their rate of con-
vergence and convergence, while the convergence analysis of linearized schemes is trivial. For this reason,
we only show how the solution attains a steady state in the iteration process (see Fig. 3). About 10 iterations
are required in the domain where the generation threshold is overpassed and far away (curve 1) or amplifi-
cation is virtually absent (curve 2). Usually, a steady-state solution is attained in several tens of iteration
steps (curve 3). Several hundred iteration steps can be required near the generation threshold, where a
steady-state solution is attained slowly (curve 4). The process of attaining a steady-state solution to the non-
stationary system will be discussed below.

Let us discuss the question of where radiation in the system is generated from when there are no incident
waves (the generator regime). In actual physical systems, radiation is produced and amplified from sponta-
neous noises. In numerical modeling, this is associated with computational errors in the integral on the right-
hand side of the equations. Clearly, at the first iteration step or at the initial time, we have
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everywhere inside the domain z ∈ [0, L]. However, I ~ 10–15 in reality. This is an equivalent of spontaneous
noises and a trigger for the generation process.

5. NUMERICAL RESULTS FOR VFEL

Based on the finite-difference methods proposed, a software package has been developed for the numer-
ical modeling of quasi-Cherenkov VFEL operation. We demonstrate a small number of examples of the suc-
cessful package performance that characterize all the basic features in the behavior of electromagnetic fields
for two-wave quasi-Cherenkov VFEL generating radiation in the millimeter wavelength range. The numer-
ical results obtained agree entirely with the analytical estimates and the expected behavior of the solution.

It should be emphasized that we also modeled VFEL operation in the X-ray range. However, since many
physical and engineering problems (such as multiple particles scattering in crystals, etc.) have not been
solved in this range thus far, the creation of an X-ray quasi-Cherenkov VFEL for the electron beams avail-
able is not possible.

The starting currents of the electron beam, the radiation power, and the radiation frequency depend on
the geometry of the VDFB. Changing this geometry, we can change these characteristics and switch from
the generation regime to the amplification regime and vice versa. Altogether, there are more than ten initial
parameters of the system that influence its qualitative behavior. Figures 4 and 5 show the numerical results
for stationary system (5). The threshold current density is a very important characteristic describing the
behavior of the system. Figure 4 displays the amplitude of the electromagnetic field as a function of the
beam current density in Bragg geometry for an idealized system (a) without absorption (the imaginary part
of the dielectric permittivity χ0 is zero) and (b) with absorption. The main goal was to analyze the amplifi-
cation regime in Bragg geometry (L = 20 cm). As expected, the generation threshold increases in the case
of absorption or when it increases. In both plots, this threshold is shown by line B. The range between lines
A and B corresponds to the regime of amplification. As absorption increases, the width of this range
increases by one order of magnitude. The increase in the width of the amplification range is determined by
the balance between the rate of radiation generation in the wave synchronous with the electron beam and
the rate of radiation absorption of the diffracted wave, which provides distributed feedback in the generator.
As absorption increases, the size of the domain where radiation absorption in the backward wave exceeds
the radiation generation in the synchronous wave increases as well. The domain with such parameters cor-
responds to the regime of regenerative amplification. Figure 5a shows the generation threshold as a function
of the target length (the solid curve corresponds to E0 = 0 and χ0 = 0.1, and the dashed curve, to χ0 = (0.1,
0.001). The plot displays the generation threshold with and without absorption in the target. The larger the
thickness of the target, the lower the threshold. The functional dependence of the generation threshold on
the length changes. Analytical estimates suggest that, for short lengths, the threshold current is inversely
proportional to the fifth power of the target length. As the target length increases, this dependence becomes
milder. In the ideal case, where the length is long and absorption is taken into account, the threshold current
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ceases to depend on the length. Our numerical computations have shown that the presence of an external
wave (E0 ≠ 0) also reduces the generation threshold.

Laue geometry was also analyzed in the simulation (Fig. 2). Figure 5b shows the amplitude of the elec-
tromagnetic field as a function of the current density for various amplitudes of incident waves (χ0 = 0.1,
L = 80). The curve with the amplitude E0 = 0 corresponds to the SASE regime. The other curves demonstrate
the regime of amplification. For the parameters chosen, self-amplified stimulated emission occurs at large
current densities. As the interaction length increases, the current density required for this regime reduces.

Now, let us analyze the results obtained for VFEL simulation with external mirrors (the geometry shown
in Fig. 2b). The presence of external mirrors reduces the generation threshold, thus, making it possible to
achieve the regime of stationary saturation at lower currents. We present the numerical results for the case
of an incident wave with the amplitude E0 = 0.1 for several values of the reflection coefficient α1 = α (the
other coefficients in (7) are assume to vanish: αi = 0, i = 2, 3, 4). The variant α = 0 corresponds to the case
of absence of mirrors. Figure 6a shows the wave amplitude as a function of the phase ϕ1 varying from 0 to
2π. As the reflection coefficient becomes higher than α = 0.5, there appear two distinct domains: with stable
and unstable solutions. The domain with an unstable blowing-up solution is shown by the shaded area in
Fig. 6a. The presence of such a domain can be explained by the fact that the phases of the generated wave
depend on the phases of the reflection from the Bragg mirrors. Changing α, we thus change the synchronism
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conditions between the electron beam and the wave. When synchronism between the electrons and the wave
is violated, the current term becomes small and the system of equations becomes linear. It is well known
that a homogeneous linear system of equations has either the trivial solution or an infinite number of solu-
tions (when its determinant is zero). This uncertainty may lead to blowup in numerical modeling. This case
corresponds to the shaded area shown in Fig. 6a. The simulation of the amplification regime in Laue geom-
etry with external mirrors is presented in Fig. 7a. The numerical results shown correspond to the beam cur-
rent densities j = 10 A/cm2 (no mirrors, the solid curve), j = 100 A/cm2 (no mirrors, the dash-and-dot curve),
and j = 1000 A/cm2 (no mirrors, the dashed curve) for various α. The generator in Laue geometry operates
at current densities that are several orders of magnitude lower than the laser in the SASE regime (for the
same length of the interaction region).

Finally, we discuss the results of the simulation obtained for nonstationary system (4). The results of the
simulation obtained for the stationary case should be repeated for the nonstationary case, and this has been
done. Additionally, various plots showing bifurcations of the solutions were obtained. In particular, Fig. 6b
shows the amplitudes of the incident and diffracted waves at the target exit for various Bragg geometry
parameters l2. A variation in only one parameter changes the qualitative behavior of the solution. We see
curves with a precisely repeating oscillation period, several oscillations imposed on a single curve, and a
steady state solution. As the parameters of the system vary, one regime of generation switches to another
according to the transition of the parameters of order from one critical value to another. A parameter of order
can be defined as the electron beam density, the asymmetry factor, the absorption coefficient, frequency, etc.
Figure 7b shows the results of the simulation obtained for a nonstationary system in Laue geometry. Here,
bifurcations were found to occur at the very high beam current density j = 104 A/cm2.

6. CONCLUSIONS

Thus, our numerical experiments confirmed that the mathematical models proposed and the numerical
algorithms developed can effectively be applied to the simulation of nonlinear regimes in VFEL operation.
The numerical results agree with analytical estimates obtained in the linear approximation. The analysis per-
formed suggests that VFEL operation can be numerically modeled in planned experiments. The results
obtained allow us to determine the possible types of electron-beam instabilities and generation regimes in
VDFB geometry and their dependence on various parameters.
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