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Abstract

We study the quantum mechanics of a Dirac fermion on a curved spacetime manifold. The

metric of the spacetime is completely arbitrary, allowing for the discussion of all possible inertial

and gravitational field configurations. In this framework, we find the Hermitian Dirac Hamiltonian

for an arbitrary classical external field (including the gravitational and electromagnetic ones). In

order to discuss the physical content of the quantum-mechanical model, we further apply the Foldy-

Wouthuysen transformation, and derive the quantum equations of motion for the spin and position

operators. We analyse the semiclassical limit of these equations and compare the results with the

dynamics of a classical particle with spin in the framework of the standard Mathisson-Papapetrou

theory and in the classical canonical theory. The comparison of the quantum mechanical and

classical equations of motion of a spinning particle in an arbitrary gravitational field shows their

complete agreement.
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I. INTRODUCTION

Immediately after the notion of spin was introduced in physics and after the relativistic

Dirac theory was formulated, the study of spin dynamics in a curved spacetime (i.e., in the

gravitational field) was initiated. The early efforts were mainly concerned with the develop-

ment of mathematical tools and methods appropriate for the description of the interaction

of spinning particles with the gravitational field [1–11]. As an interesting by-product, the

studies of the spinor analysis in the framework of the general Lagrange-Noether approach

have subsequently resulted in the construction of the gauge-theoretic models of physical

interactions, including also gravity [12–16].

At a later stage, considerable attention was turned to the investigation of the specific

physical effects in the gravitational field predicted for quantum, semiclassical, and classical

relativistic particles with spin [17–32]. Various aspects of the dynamics of fermions were

studied in the weak gravitational field, i.e., for the case when the geometry of the spacetime

does not significantly deviate from the flat Minkowski manifold. Another class of problems

was the analysis of trajectories of semiclassical and classical particles in the gravitational

field configurations which arise as the exact solutions of Einstein’s equations (such as the

spherically symmetric Schwarzschild metric or the Kerr metric of a rotating source). The

behavior of spin in the strong gravitational fields represents another interesting subject with

the possible applications to the study of the physical processes in the vicinity of massive

astrophysical objects and near black holes. For the overview of the important mathematical

subtleties, the reader can consult [33–36], for example.

In this paper, we continue our investigations of the quantum and semiclassical Dirac

fermions using the method of the Foldy-Wouthuysen (FW) transformation. Earlier, we

analyzed the dynamics of spin in weak static and stationary gravitational fields [37–40] and

in strong stationary gravitational fields [41] of massive compact sources. Now we extend our

previous results to the general case of a completely arbitrary gravitational field.

The paper is organized as follows. In Sec. II, we give preliminaries for the description of

the general metric and the coframe, and then derive the Hermitian Dirac Hamiltonian in an

arbitrary curved spacetime. For completeness, we consider the electrically charged particle

interacting also with the electromagnetic field. In Sec. III, we outline the FW technique and

apply this method to derive the FW Hamiltonian together with the corresponding operator
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equations of motion. The central result is the derivation of the precession of spin in an

arbitrary gravitational field. The quantum and semiclassical spin dynamics is compared with

the dynamics of a classical spin in Sec. IV. We use the standard formalism of Mathisson and

Papapetrou, and discuss the Hamiltonian approach. The results obtained are summarized

in Sec. V.

Our notations and conventions are the same as in [38]. In particular, the world indices

of the tensorial objects are denoted by Latin letters i, j, k, . . . = 0, 1, 2, 3 and the first let-

ters of the Greek alphabet label the tetrad indices, α, β, . . . = 0, 1, 2, 3. Spatial indices

of 3-dimensional objects are denoted by Latin letters from the beginning of the alphabet,

a, b, c, . . . = 1, 2, 3. The particular values of tetrad indices are marked by hats.

II. DIRAC PARTICLE IN A GRAVITATIONAL FIELD

A. General parametrization of the spacetime metric

Let us recall some basic facts and introduce the notions and objects related to the de-

scription of the motion of a classical spinning particle in a curved manifold. The massive

particle is quite generally characterized by its position in spacetime, xi(τ), where the local

spacetime coordinates are considered as functions of the proper time τ , and by the tensor

of spin Sαβ = −Sβα. The analysis of the dynamics of the classical spinning particle is given

later in Sec. IV.

We denote 4-velocity of a particle Uα = eαi dx
i/dτ . In view of the choice of parametrization

by the proper time, it is normalized by the standard condition gαβU
αUβ = c2 where gαβ =

diag(c2,−1,−1,−1) is the flat Minkowski metric. We use the tetrad eαi (or coframe) to

describe the dynamics of spinning particles on a spacetime manifold in arbitrary curvilinear

coordinates. When the spacetime is flat, which means that the gravitational field is absent,

one can choose the global Cartesian coordinates and the holonomic orthonormal frame that

coincides with the natural one, eαi = δαi . The spacetime metric is related to the coframe field

in the usual way: gαβe
α
i e

β
i = gij .

We use the notation t for the coordinate time and xa (a = 1, 2, 3) denote spatial local

coordinates. There are many different ways to represent a general spacetime metric. A

convenient parametrization of the spacetime metric was proposed by De Witt [42] in the
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context of the canonical formulation of the quantum gravity theory. In a slightly different

disguise, the general form of the line element of an arbitrary gravitational field reads

ds2 = V 2c2dt2 − δâb̂W
â
cW

b̂
d (dx

c −Kccdt) (dxd −Kdcdt). (2.1)

This parametrization involves more functions than the actual number of the metric com-

ponents. Indeed, the total number of the functions V (t, xc), Ka(t, xc), and W â
b(t, x

c) is

1 + 3 + 9 = 13 which is greater than 10. However, we have to take into account that the

line element (2.1) is invariant under redefinitions W â
b −→ Lâ

ĉW
ĉ
b using arbitrary local ro-

tations Lâ
ĉ(t, x) ∈ SO(3). Subtracting the 3 rotation degrees of freedom, we recover exactly

10 independent variables that describe the general metric of the spacetime.

B. Dirac equation

One needs the orthonormal frames to discuss the spinor field and to formulate the Dirac

equation. From the mathematical point of view, the tetrad is necessary to “attach” a spinor

space at every point of the spacetime manifold. Tetrads (coframes) are naturally defined up

to a local Lorentz transformations, and one usually fixes this freedom by choosing a gauge.

We discussed the choice of the tetrad gauge in [40] and have demonstrated that a physically

preferable option is the Schwinger gauge [43, 44], namely the condition e 0̂a = 0, a = 1, 2, 3.

Accordingly, for the general metric (2.1) we will work with the tetrad

e 0̂i = V δ 0
i , eâi =W â

b

(
δbi − cKb δ 0

i

)
, a = 1, 2, 3. (2.2)

The inverse tetrad, such that eiαe
α
j = δij ,

ei
0̂
=

1

V

(
δi0 + δiacK

a
)
, eiâ = δibW

b
â, a = 1, 2, 3, (2.3)

also satisfies the similar Schwinger condition, e0â = 0. Here we introduced the inverse 3× 3

matrix, W a
ĉW

ĉ
b = δab .

The following observation will be useful for the subsequent computations. A classical

massive particle moves along a world line xi(τ), i = 0, 1, 2, 3, parametrized by the proper

time τ . Its 4-velocity is defined as usual by the derivatives U i = dx/dτ . With respect to

a given orthonormal frame, the velocity has the components Uα = eαi U
i, α = 0, 1, 2, 3. It

is convenient to describe the 4-velocity by its 3 spatial components vâ, a = 1, 2, 3, in an
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anholonomic frame. Then Uα = (γ, γvâ), with the Lorentz factor γ−1 =
√

1− v2/c2, and,

consequently,

U0 =
dt

dτ
= e0αU

α =
γ

V
, (2.4)

Ua =
dxa

dτ
= eaαU

α =
γ

V

(
cKa + VW a

b̂ v
b̂
)
. (2.5)

We used (2.3) here. Dividing (2.5) by (2.4) and denoting

Fa
b = VW a

b̂,

we find for the velocity with respect to the coordinate time

dxa

dt
= Fa

b v
b + cKa. (2.6)

The Dirac equation in a curved spacetime reads

(i~γαDα −mc)Ψ = 0, α = 0, 1, 2, 3. (2.7)

This equation is invariant under the general transformations of the spacetime coordinates

(under diffeomorphism), and is covariant under the local Lorentz transformations. Recall

that the Dirac matrices γα are defined in local Lorentz (tetrad) frames and they have constant

components. The spinor covariant derivatives are consistently defined in the gauge-theoretic

approach [13–16] as

Dα = eiαDi, Di = ∂i +
iq

~
Ai +

i

4
σαβΓi αβ. (2.8)

Here the Lorentz connection is Γi
αβ = −Γi

βα, and σαβ =
i

2

(
γαγβ − γβγα

)
are the generators

of the local Lorentz transformations of the spinor field. For completeness, we assumed that

the Dirac particle is charged and the electric charge q describes its coupling to the 4-potential

of the electromagnetic field Ai. Note that the canonical dimension of the electromagnetic

field strength 2-form F = dA and of the electromagnetic 1-form A = Aidx
i is [F ] = [A] =

[~/q], see [45]. The gravitational and inertial effects (which are deeply related to each other

in the framework of the gauge-theoretic approach) are encoded in coframe and connection

in (2.7),(2.8); for the relevant discussion see Refs. [46–48] and references therein.

Using the parametrization of the general metric (2.1) with the tetrad (2.2) in the

Schwinger gauge, we find explicitly the components of connection

Γi â0̂ =
c2

V
W b

â ∂bV ei
0̂ − c

V
Q(âb̂) ei

b̂, (2.9)

Γi âb̂ =
c

V
Q[âb̂] ei

0̂ +
(
Câb̂ĉ + Câĉb̂ + Cĉb̂â

)
ei

ĉ. (2.10)
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Here we introduced the two useful objects:

Qâb̂ = gâĉW
d
b̂

(
1

c
Ẇ ĉ

d +Ke∂eW
ĉ
d +W ĉ

e∂dK
e

)
, (2.11)

Câb̂ĉ =W d
âW

e
b̂ ∂[dW

ĉ
e], Câb̂ĉ = gĉd̂ Câb̂d̂. (2.12)

As usual, the dot ˙ denotes the partial derivative with respect to the coordinate time t. One

can immediately recognize that Câb̂ ĉ = −Cb̂âĉ is the anholonomity object for the spatial triad

W â
b. The indices (that all run from 1 to 3) are raised and lowered with the help of the

spatial part of the flat Minkowski metric, gâb̂ = − δab = diag(−1,−1,−1).

One can derive the Dirac equation from the action integral I =

∫
d4x

√
−g L, with the

Lagrangian (recall for the conjugate spinor Ψ := Ψ†γ 0̂)

L =
i~

2

(
ΨγαDαΨ−DαΨγ

αΨ
)
−mcΨΨ. (2.13)

A direct check shows that, with (2.8)-(2.12) inserted, the Schrödinger form of the Dirac

equation derived from this action involves a non-Hermitian Hamiltonian. However, this

problem is fixed if we introduce a new wave function by

ψ =
(√−ge0

0̂

) 1

2 Ψ. (2.14)

Such a non-unitary transformation also appears in the framework of the pseudo-Hermitian

quantum mechanics [49, 50] (cf. [51]).

Variation of the action with respect to the rescaled wave function ψ yields the Dirac

equation in Schrödinger form i~
∂ψ

∂t
= Hψ. The corresponding Hermitian Hamiltonian

reads

H = βmc2V + qΦ+
c

2

(
πb F b

aα
a + αaF b

aπb
)

+
c

2
(K · π + π ·K) +

~c

4
(Ξ ·Σ−Υγ5) . (2.15)

Here K = {Ka}, and the kinetic momentum operator π = {πa} with πa = − i~∂a + qAa =

pa+qAa accounts for the interaction with the electromagnetic field Ai = (Φ, Aa). To remind

the notation: β = γ 0̂,α = {αa},Σ = {Σa}, where the 3-vector-valued Dirac matrices have

their usual form; namely, αa = γ 0̂γa (a, b, c, · · · = 1, 2, 3) and Σ1 = iγ 2̂γ 3̂,Σ2 = iγ 3̂γ 1̂,Σ3 =

iγ 1̂γ 2̂. We also introduced a pseudoscalar Υ and a 3-vector Ξ = {Ξa} by

Υ = V ǫâb̂ĉΓâb̂ĉ = −V ǫâb̂ĉCâb̂ĉ, Ξâ =
V

c
ǫâb̂ĉ Γ0̂

b̂ĉ = ǫâb̂ĉQb̂ĉ. (2.16)
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Note that we have fixed a number of small points with the signs and numeric factors,

and one should be careful when comparing formulas above with the earlier results in [41].

For the static and stationary rotating configurations, the pseudoscalar invariant vanishes

(ǫâb̂ĉCâb̂ĉ = 0), and thus the corresponding term was absent in the special cases considered

earlier [40, 41]. But in general this term contributes to the Dirac Hamiltonian.

It is worthwhile to mention that the recent discussion [52] of the Dirac fermions in an

arbitrary gravitational field is very different in that the non-Hermitian Hamiltonian is used

in that work, in deep contrast to the explicitly Hermitian one (2.15).

III. THE FOLDY-WOUTHUYSEN TRANSFORMATION

In the previous section, we described the dynamics of the fermion in Dirac represen-

tation. The physical contents of the theory is however revealed in the Foldy-Wouthuysen

representation. We will now construct the FW [53] Hamiltonian for the fermion moving

in an arbitrary gravitational field described by the general metric (2.1). We start with the

exact Dirac Hamiltonian (2.15) and apply the method developed in [54].

Just like before in our earlier work [40, 41], we do not make any assumptions and/or

approximations for the functions V,W â
b, K

a. The Planck constant ~ will be treated as the

only small parameter. In accordance with this strategy, we retain in the FW Hamiltonian

all the terms of the zero and first orders in ~. The leading nonvanishing terms of order ~2

have been calculated in both nonrelativistic and weak field approximations in our previous

works [37, 40, 41] for the more special cases. These terms describe the gravitational contact

(Darwin) interaction.

A. General preliminaries

A generic Hamiltonian can be decomposed into operators that commute and anticommute

with β:

H = βM+ E +O, βM = Mβ, βE = Eβ, βO = −Oβ. (3.1)

Here, the operators M, E are even, and O is odd.

Foldy-Wouthuysen representation is obtained by means of the unitary transformation

ψFW = Uψ, HFW = UHU−1 − i~U∂tU
−1. (3.2)
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In arbitrary strong external fields, the following transformation operator can be used [54]:

U =
βǫ+ βM−O√
(βǫ+ βM−O)2

β, U−1 = β
βǫ+ βM−O√
(βǫ+ βM−O)2

. (3.3)

Here ǫ =
√
M2 +O2, and U−1 = U † if H = H†. Applying (3.2), we obtain the explicit

transformed Hamiltonian

H′ = βǫ+ E +
1

2T

(
[T, [T, (βǫ+ Z)]] + β [O, [O,M]]

− [O, [O,Z]]− [(ǫ+M), [(ǫ+M),Z]]− [(ǫ+M), [M,O]]

−β {O, [(ǫ+M),Z]}+ β {(ǫ+M), [O,Z]}
)

1

T
, (3.4)

where Z = E −i~ ∂
∂t

and T =
√
(βǫ+ βM−O)2. The square and curly brackets denote the

commutator [A,B] = AB −BA and the anticommutator {A,B} = AB +BA, respectively.

The Hamiltonian (3.4) still contains odd terms proportional to ~. We can write it as

follows:

H′ = βǫ+ E ′ +O′, βE ′ = E ′β, βO′ = −O′β, (3.5)

where ǫ =
√
M2 +O2. The even and odd parts are determined by

E ′ =
1

2
(H′ + βH′β)− βǫ, O′ =

1

2
(H′ − βH′β) . (3.6)

Additional unitary transformation removes the odd part, so that the final approximate

Hamiltonian reads [54]

HFW = βǫ+ E ′ +
1

4
β

{
O′2,

1

ǫ

}
. (3.7)

For the case under consideration, we have explicitly

M = mc2V, (3.8)

E = qΦ+
c

2
(K · π + π ·K) +

~c

4
Ξ ·Σ, (3.9)

O =
c

2

(
πb F b

aα
a + αaF b

aπb
)
− ~c

4
Υγ5. (3.10)

B. Foldy-Wouthuysen Hamiltonian and quantum dynamics

We now limit ourselves to the case when the electromagnetic field is switched off. The

computations along the lines described in the previous subsection are straightforward, and
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after a lengthy algebra we obtain the Foldy-Wouthuysen Hamiltonian in the following form

HFW = H(1)
FW +H(2)

FW . (3.11)

Here the two terms read, respectively,

H(1)
FW = βǫ′ +

~c2

16

{
1

ǫ′
,
(
2ǫcaeΠe{pb,Fd

c∂dF b
a}+Πa{pb,F b

aΥ}
)}

+
~mc4

4
ǫcaeΠe

{
1

T ,
{
pd,Fd

cF b
a∂bV

}}
, (3.12)

H(2)
FW =

c

2
(Kapa + paK

a) +
~c

4
ΣaΞ

a

+
~c2

16

{
1

T ,
{
Σa{pe,F e

b},
{
pf ,
[
ǫabc(

1

c
Ḟ f

c −Fd
c∂dK

f +Kd∂dF f
c)

− 1

2
F f

d

(
δdbΞa − δdaΞb

)]}}
}
, (3.13)

ǫ′ =

√
m2c4V 2 +

c2

4
δac{pb,F b

a}{pd,Fd
c}, T = 2ǫ′

2
+ {ǫ′, mc2V }. (3.14)

Let us derive the equation of motion of spin. As usual, we introduce the polarization op-

erator Π = βΣ, and the corresponding dynamical equation is obtained from its commutator

with the FW Hamiltonian. The computation is straightforward and we find

dΠ

dt
=
i

~
[HFW ,Π] = Ω(1) ×Σ+Ω(2) ×Π. (3.15)

Here the 3-vectors Ω(1) and Ω(2) are the operators of the angular velocity of spin precessing

in the exterior classical gravitational field. Their components read explicitly as follows:

Ωa
(1) =

mc4

2

{
1

T , {pe, ǫ
abcF e

bFd
c∂d V }

}

+
c2

8

{
1

ǫ′
, {pe, (2ǫabcFd

b∂dF e
c + δabF e

b Υ)}
}
, (3.16)

and

Ωa
(2) =

~c2

8

{
1

T ,
{
{pe,F e

b},
{
pf ,
[
ǫabc(

1

c
Ḟ f

c − Fd
c∂dK

f +Kd∂dF f
c)

− 1

2
F f

d

(
δdbΞa − δdaΞb

)]}}
}

+
c

2
Ξa. (3.17)

One may notice that the two different matrices, Σ and Π, appear on the right-hand side

of Eq. (3.15). This is explained by the fact that the vector Ω(1) contains odd number of
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components of the momentum operator, whereas the vector Ω(2) contains even number of pa.

Actually, both Ω(1) and Ω(2) depend only on the combination F b
apb. However, the velocity

operator is proportional to an additional β factor and is equal to va = βc2F b
apb/ǫ

′, as we

demonstrate below, see (3.24). As a result, the operator Ω(1) also acquires an additional β

factor [40], when it is rewritten in terms of the velocity operator v. Note also that in the

FW representation only upper part of β proportional the unit matrix is relevant. Therefore,

the appearance of β does not lead to any physical effects at least until antiparticles are

considered (which would require special investigations).

We now use the general results above to obtain the corresponding semiclassical expressions

by evaluating all anticommutators and neglecting the powers of ~ higher than 1. Then

equations (3.15)-(3.17) yield the following explicit semiclassical equations describing the

motion of the average spin (as usual, vector product is defined by {A×B}a = ǫabcA
bBc):

ds

dt
= Ω× s = (Ω(1) +Ω(2))× s, (3.18)

Ωa
(1) =

c2

ǫ′
Fd

cpd

(
1

2
Υδac − ǫaefV Cef c +

ǫ′

ǫ′ +mc2V
ǫabcW e

b̂ ∂eV

)
, (3.19)

Ωa
(2) =

c

2
Ξa − c3

ǫ′(ǫ′ +mc2V )
ǫabcQ(bd)δ

dnFk
npkF l

cpl, (3.20)

where, in the semiclassical limit,

ǫ′ =
√
m2c4V 2 + c2δcdFa

cF b
d pa pb . (3.21)

We can substitute the results obtained into the FW Hamiltonian (3.11) and recast the lat-

ter in a compact and transparent form in terms of the precession angular velocities Ω(1),Ω(2):

HFW = βǫ′ +
c

2
(K ·p+ p ·K) +

~

2
Π ·Ω(1) +

~

2
Σ ·Ω(2). (3.22)

We can use (3.22) to derive the velocity operator in the semiclassical approximation:

dxa

dt
=
i

~
[HFW , x

a] = β
∂ǫ′

∂pa
+ cKa = β

c2

ǫ′
Fa

bδ
bcFd

cpd + cKa. (3.23)

Comparing this with the relation between the holonomic and anholonomic components of

the velocity, (2.6), we find the velocity operator in the Schwinger frame (2.2):

β
c2

ǫ′
F b

apb = va. (3.24)
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This immediately yields δcdFa
c F b

dpapb = (ǫ′)2v2/c2. Using this in (3.21), we have (ǫ′)2 =

m2c4V 2 + (ǫ′)2v2/c2, and thus we find

ǫ′ = γ mc2 V. (3.25)

Equations (3.24) and (3.25) are crucial for establishing the full agreement of the quantum

and classical dynamics of spin. In particular, using (3.24) and (3.25), we find

ǫ′

ǫ′ +mc2V
=

γ

1 + γ
,

c3

ǫ′(ǫ′ +mc2V )
F b

apbFd
cpd =

γ

1 + γ

vavc
c
. (3.26)

C. Quantum-mechanical equations of particle dynamics

We now turn to the analysis of the motion of the quantum particle in the gravitational

field. The dynamics of spin is described in an anholonomic frame. For consistency, we will

use an anholonomic frame description for the particle dynamics, too. The Schwinger gauge

with e0â = 0 simplifies the equation for the force operator which is given by

Fâ =
dpâ
dt

=
1

2

d

dt

{
ebâ, pb

}
=

1

2

{
dW b

â

dt
, pb

}
+

1

2

{
W b

â,
dpb
dt

}

=
1

2

{
Ẇ b

â, pb

}
+

i

2~

{
[HFW ,W

b
â], pb

}
− 1

2

{
W b

â, ∂bHFW

}
. (3.27)

Here as before the partial derivative with respect to the coordinate time is denoted by the

dot, in particular, Ẇ b
â := ∂tW

b
â.

The explicit expression for the force operator reads

Fâ =
1

2

{
Ẇ b

â, pb

}
+

1

4

{
pb,

{
∂HFW

∂pc
, ∂cW

b
â

}}
− 1

2

{
W b

â, ∂bHFW

}
, (3.28)

∂HFW

∂pc
= β

c2

4
δad
{
1

ǫ′
,
{
pb,F b

aF c
d

}}
+ cKc +

~

2
T

c, (3.29)

where we introduced the following compact notation

T
c =

∂U
∂pc

, U := Π ·Ω(1) +Σ ·Ω(2). (3.30)

Corrections due to the noncommutativity of operators are of order of ~2 and can be neglected

in (3.28). Let us split the total force operator into the terms of the zeroth and first orders

in the Planck constant:

Fâ = F
(0)
â + F

(1)
â . (3.31)
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The zeroth order terms read as follows

F
(0)
â =

1

2

{
Ẇ b

â, pb

}
− 1

2

{
W b

â, ∂b

[
βǫ′ +

c

2
(Kapa + paK

a)
]}

+
1

4

{
pb,

{(
β
c2

4
δad
{
1

ǫ′
,
{
pb,F b

aF c
d

}}
+ cKc

)
, ∂cW

b
â

}}
. (3.32)

These terms describe the influence of the gravitational field on the particle without taking

into account its internal structure. The first term in Eq. (3.32) is important for the motion

of the particle in nonstationary spacetimes, for example, in cosmological context. The next

term describes the Newtonian force, the related relativistic corrections, and the Coriolis-

like force proportional to K. The last term also contributes to the relativistic corrections

to the force acting in static spacetimes that arise in addition to the velocity-independent

Newtonian force.

All the terms of the first order in the Planck constant are proportional to the spin oper-

ators and therefore they collectively represent the quantum-mechanical counterpart of the

Mathisson force (which is an analogue of the Stern-Gerlach force in electrodynamics). This

force is given by, recall the notation (3.30),

F
(1)
â =

~

8

{
pb,
{
T

c, ∂cW
b
â

}}
− ~

4

{
W b

â, ∂bU
}
. (3.33)

In the next section, we will demonstrate the agreement between the quantum-mechanical

and the classical equations of particle dynamics.

Eqs. (3.32) and (3.33) perfectly reproduce all previously obtained quantum-mechanical

results [37, 38, 40, 41]. In order to illustrate this, let us find the force on the spinning particle

in the metric [46] of an arbitrarily moving noninertial (accelerated and rotating) observer:

V = 1 +
a · r
c2

, W â
b = δab , Ka = −1

c
(ω × r)a. (3.34)

The FW Hamiltonian for this metric was derived in [41]. It reads:

HFW =
β

2

{(
1 +

a · r
c2

)
,
√
m2c4 + c2p2

}
− ω · (r × p)

+
~

2
Π · a× p

mc2(γ + 1)
− ~

2
Σ · ω, (3.35)

where the object that has the meaning of the Lorentz factor is defined by

γ =

√
m2c4 + c2p2

mc2
. (3.36)
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Using the FW Hamiltonian (3.35) in (3.28) and (3.29) yields the explicit force

Fâ = − β

c2
aa
√
m2c4 + c2p2 − (ω × p)a

= βmγ (−a + v × ω)a . (3.37)

Here we used (3.36) and the relation between the operators of momentum and velocity

pâ = ebâpb = βγmva which is recovered from (3.24). One can straightforwardly verify that

the usual structure of the inertial forces (in particular, the Coriolis and centrifugal pieces) is

encoded in the force (3.37), see the corresponding computation of the coordinate acceleration

operator in [41].

For the metric (3.34), the spacetime curvature vanishes. As a result, the curvature- and

spin-dependent Mathisson force is zero. In the general case, the Mathisson force is nontrivial,

and the validity of the equivalence principle is an open question (see, e.g., Ref. [55]). In a

separate publication, we will analyse the possible generalization of the equivalence principle

for spinning particles, making use of the force framework developed here. As a preliminary

step, we refer to [41] where we evaluated the quantum force for the weak gravitational field

and recovered the linearized Mathisson force, thus confirming the earlier results [56, 57].

Any theory based on the Dirac equation can reproduce only a certain reduced form of

the equation of spin motion. The formal reason is the absence in the Lagrangian and the

Hamiltonian of the terms bilinear in the spin matrices because their product can always

be simplified: ΣaΣb = δab + iǫabcΣc. As a result, the equation of spin motion of a Dirac

particle cannot contain such terms. In quantum mechanics of particles with higher spins

(s > 1/2) as well as in the classical gravity, the terms bilinear in spin cannot be reduced

and the general MP equations [58, 59] should be used.

IV. CLASSICAL SPINNING PARTICLES

A. Mathisson-Papapetrou approach

The motion of classical spinning particles in the gravitational field can be consistently

described by the generally covariant MP theory [58, 59], for the recent discussion see also

[60–63]). In this framework, a test particle is characterized by the 4-velocity Uα and the

tensor of spin Sαβ = −Sβα. The total 4-momentum is not collinear with the velocity,

in general. In [64], a different noncovariant approach was developed, in which the main
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dynamical variable is the 3-dimensional spin defined in the rest frame of a particle. In our

previous work [37–41] we have used the MP theory, and demonstrated its consistency with

the noncovariant approach.

The analysis of the general MP equations is a difficult task [62] and the exact solutions are

not available even for the simple spacetime geometries. The knowledge of the symmetries

of the gravitational field, i.e., of the corresponding Killing vectors, significantly helps in

the integration of the equations of motion, as can be demonstrated [65] for the de Sitter

spacetime, in particular. However, in the absence of the symmetries, various approximation

schemes were developed to find solutions of MP equations of motion. Following [60], we

neglect the second order spin effects, so that the MP system reduces to

DUα

dτ
= fα

m = − 1

2m
SµνUβRµνβ

α, (4.1)

DSαβ

dτ
=
UαUγ

c2
DSγβ

dτ
− UβUγ

c2
DSγα

dτ
. (4.2)

On the right-hand side of (4.1) we have the Mathisson force fα
m that depends on the Riemann

curvature tensor Rµνβ
α of spacetime. The tensor of spin satisfies the Frenkel condition

UαS
αβ = 0 and gives rise to the vector of spin

Sα =
1

2
ǫαβγS

βγ . (4.3)

Here we use the totally antisymmetric tensor

ǫαβγ =
1

c
ηαβγδU

δ, (4.4)

constructed from the Levi-Civita tensor ηαβγδ. The relation (4.3) can be inverted

Sαβ = − ǫαβγSγ (4.5)

with the help of the identity

ǫαβγǫµνγ = P α
ν P

β
µ − P α

µ P
β
ν , (4.6)

where P α
µ = δαµ − 1

c2
UαUµ is the projector on the rest frame of the particle.

Using the definition (4.3), we rewrite the equation (4.2) in an alternative form

DSα

dτ
=
UαU

β

c2
DSβ

dτ
= − 1

c2
Uαf

β
mSβ. (4.7)
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With the help of the projectors and antisymmetric tensor, one can decompose the curva-

ture tensor into the three irreducible pieces

IEαβ =
UµUν

c2
Rαµβν , (4.8)

IMαβ =
1

4
ǫαµνǫβρσRµνρσ, (4.9)

IBα
β =

Uγ

2c
ǫαµνR

βγµν . (4.10)

By construction, these tensors satisfy the orthogonality conditions IEαβU
β = 0, IMαβUβ = 0,

IBα
βUβ = 0, IBα

βUα = 0. Taking into account the obvious symmetry IEαβ = IEβα and

IMαβ = IMβα, we have 6 + 6 + 8 = 20 independent components for these objects. The

curvature decomposition reads explicitly

Rαβµν =
1

c2
(
UαUµIEβν − UβUµIEαν − UαUνIEβµ + UβUνIEαµ

)
+ ǫαβγǫµνλIMγλ

+
1

c

[
ǫαβγ (UµIBγ

ν − UνIBγ
µ) + ǫµνγ

(
UαIBγ

β − UβIBγ
α
)]
. (4.11)

As a result, we rewrite the Mathisson force as

fα
m =

c

2m
IBβ

αSβ. (4.12)

The physical spin is defined in the rest frame of a particle where the 4-velocity reduces

to uα = (1, 0) = δα0 . The local reference frame and the rest frame are related by the Lorentz

transformation such that Uα = Λα
βu

β. Recalling Uα = (γ, γva), the Lorentz matrix reads

explicitly

Λα
β =


 γ γvb/c

2

γva δab + (γ − 1)vavb/v
2


 , (4.13)

with the Lorentz factor γ = 1/
√
1− v2/c2, where v2 = δabv

avb.

The physical spin is then sα = (Λ−1)αβS
β, hence sα = (0, s). We rewrite equation (4.7)

as
dSα

dτ
= Φα

βS
β, with Φα

β = −U iΓiβ
α+

1

c2
(fα

mUβ−fβmUα). From this we find the equation

of motion of the physical spin:

dsα

dτ
= Ωα

βs
β, (4.14)

Ωα
β = (Λ−1)αγΦ

γ
δΛ

δ
β − (Λ−1)αγ

d

dτ
Λγ

β. (4.15)
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Noticing that with respect to the coordinate basis the 4-velocity is U i = γei
0̂
+ γva eiâ, we

recast the MP system (4.1) and (4.14) into the 3-vector form

dγ

dτ
=

γ

c2
v · Ê , (4.16)

d(γv)

dτ
= γ

(
Ê + v × B

)
, (4.17)

ds

dτ
= Ω× s. (4.18)

Here using (2.1) and (4.12), we introduced the objects that can be called the generalized

gravitoelectric and gravitomagnetic fields:

Ea =
γ

V
δac
(
cQ(ĉb̂)v

b − c2W b
ĉ ∂bV

)
, (4.19)

Ba =
γ

V

(
− c

2
Ξa − 1

2
Υ va + ǫabcV Cbcdvd

)
, (4.20)

Ê
a = E

a +
c

2mγ
IBb

a

(
sb − γ

γ + 1

vbvc
c2

sc
)
. (4.21)

The components of the angular velocity of the spin precession Ω =

{
− 1

2
ǫabcΩbc

}
are ob-

tained from (4.15):

Ω = −B +
γ

γ + 1

v × E

c2
. (4.22)

Alternatively, we can explicitly write the precession velocity components with the help of

(2.9) and (2.10) as [40, 64]

Ωâ = ǫabc U
i

(
1

2
Γi

ĉb̂ +
γ

γ + 1
Γi0̂

b̂vĉ/c2
)
. (4.23)

Finally, substituting (4.19) and (4.20) into (4.22), we obtain the exact classical formula for

the angular velocity of the spin precession in an arbitrary gravitational field:

Ωâ =
γ

V

(
1

2
Υ vâ − ǫabcV Cb̂ĉdvd̂ +

γ

γ + 1
ǫabcW d

b̂ ∂dV vĉ

+
c

2
Ξâ − γ

γ + 1
ǫabcQ(̂bd̂)

vd̂vĉ
c

)
. (4.24)

The terms in the first line are linear in the 4-velocity of the particle, whereas the terms in

the second line contain the even number of the velocity factors.

As compared to the precession of the quantum spin described by Ω(1) and Ω(2) using the

coordinate time, the classical spin precession velocity Ωâ contains an extra factor

dt

dτ
= U0 =

γ

V
, (4.25)
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since the classical dynamics is parameterized using the proper time.

It is worthwhile to notice that the equations of motion of a particle (4.16) and (4.17) have

a remarkably simple form of the motion of a relativistic charged particle under the action

of the Lorentz force. It is interesting to mention a certain asymmetry: the Mathisson force

(4.12), that depends on the spin and the curvature of spacetime, contributes only to the

gravitoelectric field (4.21) but not to the gravitomagnetic one. Using (4.16) in (4.17), we

can recast the latter into the dynamical equation

dv

dτ
= Ê − v(v · Ê)

c2
+ v ×B. (4.26)

Let us consider the motion of the classical particle in the metric of a noninertial observer

(3.34). Computing the gravitoelectric and gravitomagnetic fields is straightforward: Ê =

E = − γ

V
a, and B =

γ

V
ω. As a result,

d(γv)

dt
= γ (−a+ v × ω) , (4.27)

where we changed from the proper time parametrization to the coordinate time using (4.25).

As we see, the classical (4.27) and the quantum (3.37) forces are the same.

Finally, making use of (3.24) and (3.25), we conclude that the classical equation of the

spin motion (4.22) agrees with the quantum equation (3.15) and with the semiclassical one

(3.18). Thus, the classical and the quantum theories of the spin motion in gravity are in

complete agreement. This is now verified for the arbitrary gravitational field configurations.

We thus confirm and extend our previous results obtained for the weak fields [40] and for

special strong field configurations [41].

B. Hamiltonian approach

It is instructive to compare the classical and quantum Hamiltonians of a spinning particle.

In order to do this, one can start from the classical Hamiltonian of a spinless relativistic

point particle (with an electric charge q, in general). The action has the well-known form

I = −
∫
mc2dτ + qAidx

i = −
∫ [

mc
(
gijU

iU j
)1/2

+ qAiU
i
]
dτ. (4.28)

In order to avoid working with the constrained system, we will use the deparatmetrized

formulation. With the 3-velocity va = dxa/dt = Ua/U0, we then recast the action into
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I =

∫
Ldt, where

L = −mc
(
g00 + 2g0av

a + gabv
avb
)1/2 − qA0 − qAbv

b. (4.29)

The canonical momentum is

pa =
∂L
∂va

= − mc(g0a + gabv
b)

(g00 + 2g0ava + gabvavb)1/2
− qAa. (4.30)

Inverting, we find velocity in terms of momentum πa = pa + qAa

va =
g0a

g00
− g̃abπb

[g00(m2c2 − g̃abπaπb)]1/2
, g̃ab = gab − g0ag0b

g00
. (4.31)

As a result, the classical Hamiltonian reads (we fix some sign errors of [67] here):

Hclass = pav
a −L =

(
m2c2 − g̃abπaπb

g00

)1/2

+
g0aπa
g00

+ qA0. (4.32)

For the contravariant components of the general metric (2.1) we have gij = eiαe
j
βg

αβ =
1

c2
ei
0̂
ej
0̂
− eiĉe

j

d̂
δcd. Thus explicitly, using (2.3):

g00 =
1

c2V 2
, g0a =

Ka

cV 2
, gab =

1

V 2

(
KaKb −Fa

cF b
dδ

cd
)
. (4.33)

As a result, the classical Hamiltonian (4.32) reads:

Hclass =
√
m2c4V 2 + c2δcdFa

c F b
d πa πb + cK · π + qΦ. (4.34)

Now, let us discuss a generalization of the Hamiltonian theory with spin included. In

order to take into account the spin correctly, in a Cosserat type approach a material frame

(of four linearly independent vectors) is attached to a particle, thus modelling its internal

rotational degrees of freedom. We denote it hiα.

Such a material frame does not coincide with the spacetime frame, hiα 6= eiα. In particular,

the zeroth leg is given by particle’s 4-velocity

hi
0̂
= U i. (4.35)

Any two orthonormal frames are related by a Lorentz transformation, hiα = eiβΛ
β
α. The

condition (4.35) means that the Lorentz matrix Λβ
α brings one to a local reference frame

Uα = Λα
βu

β in which the particle is at rest, i.e., uα = δα
0̂
. This is straightforwardly demon-

strated: U i = eiαU
α = eiαΛ

α
βu

β = hiαu
α = hi

0̂
. The corresponding Lorentz transformation is

explicitly given by (4.13).
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The standard way to take the dynamics of spin into account [68–70] is to amend the

classical Hamiltonian by the term
1

2
SijΩij with

Ωi
j := hiα

D

dτ
hαj = hiαU

k∇kh
α
j = hiαU

k
(
∂kh

α
j − Γkj

lhαl
)
. (4.36)

Rewriting everything in terms of the objects in particle’s rest frame, Sαβ = hαi h
β
j S

ij and

Ωα
β = hαi h

j
βΩ

i
j, we find

1

2
SijΩij =

1

2
SαβΩαβ = s ·Ω. (4.37)

Here we recover the precession velocity vector (4.23).

The resulting complete Hamiltonian has the structure that was proposed in the framework

of the general discussion in the Ref. [64]:

Hclass =
√
m2c4V 2 + c2δcdFa

c F b
d πa πb + cK · π + qΦ+ s ·Ω. (4.38)

In the general case, Ω should include both electromagnetic and gravitational contributions.

The obvious similarity of quantum (3.22) and classical (4.38) Hamiltonians is another

demonstration of complete agreement of the quantum-mechanical and classical equations of

motion discussed in the previous subsection. The consistency between the classical Hamil-

tonian dynamics and the quantum-mechanical equations of particle dynamics derived in

Sec. IIIC is also confirmed by the computation of the force. Switching off the electromag-

netic field, we find the classical equation for the force

F class
â = pbẆ

b
â + pb

∂Hclass

∂pc
∂cW

b
â −W b

â∂bHclass. (4.39)

As we see, the equations (3.28) and (4.39) completely agree. In particular, rewriting the spin-

dependent part in Eq.(3.28) in terms of the spin operator, s = ~Σ/2, shows the consistency

of the corresponding parts in the two equations.

V. CONCLUSIONS

This paper continues the study of the motion of the quantum and classical Dirac fermion

particles with spin 1/2 on a curved spacetime. Generalizing our earlier findings in [37–41] ob-

tained for the weak fields and for the special static and stationary field configurations, we now

consider the case of an absolutely arbitrary spacetime metric. The convenient parametriza-

tion in terms of the functions V (t, xc), Ka(t, xc), andW â
b(t, x

c) provides a unified description
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of all possible inertial and gravitational fields. We also include the classical electromagnetic

field for completeness. In this general framework, we derive the Hermitian Dirac Hamiltonian

(2.15). Starting with this master equation, we apply the Foldy-Wouthuysen transformation

[54] and construct the Hamiltonian (3.11) in the FW representation for an arbitrary space-

time geometry. In this paper, we have confined ourselves to the purely Riemannian case

of Einstein’s general relativity theory, possible generalization to the non-Riemannian ge-

ometries will be analysed elsewhere. Making use of the FW Hamiltonian, we derive the

operator equations of motion. In particular, we study the quantum-mechanical spin preces-

sion (3.15) and its semiclassical limit (3.18). One can apply these general results to compare

the dynamics of a spinning particle in the inertial and gravitational fields, thus revisiting

the validity of the equivalence principle [71]. The also derive the force operator and analyse

the quantum dynamics of the particle under its action in Sec. IIIC. In the second part of

the paper, we consider the motion of the classical particle with spin. In the framework of

the Mathisson-Papapetrou theory, we obtained the dynamical equations (4.16), (4.17) and

(4.26) which have a remarkably simple form of the motion of a relativistic particle under

the action of the Lorentz force, with the Mathisson force included into the generalized grav-

itoelectric field (4.21). We also derived the equation (4.24) for the angular velocity of spin

precession in the general gravitational field. It is satisfactory to see that our results further

confirm the earlier conclusions [40, 41] and demonstrate that the classical spin dynamics

is fully consistent with the semiclassical quantum dynamics of the Dirac fermion. Finally,

the complete consistency of the quantum-mechanical and classical descriptions of spinning

particles is also established using the Hamiltonian approach in Sec. IVB.

Among the important issues that remain still open, we would like to mention the need

to carefully analyse the derivation of covariant equations of motion in the Dirac and in

the Foldy-Wouthuysen representations. The crucial point in this study is to understand

the definition of the position and spin operators in these two representations, in particular

making use of the previous work on this subject in [72–82].
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