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Abstract

The Proca-Corben-Schwinger equations for a spin-1 particle with an anomalous magnetic mo-

ment are added by a term describing an electric dipole moment, then they are reduced to a

Hamiltonian form, and finally they are brought to the Foldy-Wouthuysen representation. Rela-

tivistic equations of motion are derived. The needed agreement between quantum-mechanical and

classical relativistic equations of motion is proved. The scalar and tensor electric and magnetic

polarizabilities of pointlike spin-1 particles (W bosons) are calculated for the first time.
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INTRODUCTION

The discovery of electric dipole moments (EDMs) is one of the main goals of contemporary

physics. Such a discovery would go beyond the Standard Model and open a window to new

physics. To disclose the EDM, one needs to find an anomaly in spin dynamics. The classical

spin dynamics of a particle with an anomalous magnetic moment (AMM) and an EDM was

determined many years ago [1], but the corresponding quantum-mechanical equations have

been derived only for spin-1/2 particles [2, 3].

One of the experimental priorities is a search for the EDM of the deuteron [4–6] whose

spin is 1. While the classical and quantum theories of spin motion should agree, a proper

quantum-mechanical consideration of spin-1 particles/nuclei is also necessary. We perform

such a consideration based on the Proca equations [7] with an additional term included

by Corben and Schwinger [8]. We generalize the above Proca-Corben-Schwinger (PCS)

equations to take also into account the EDM, then bring the generalized equations to a

Hamiltonian form and perform the relativistic Foldy-Wouthuysen (FW) transformation.

Unlike the original FW approach [9], we use the method [10, 11] that enables transition to

the FW representation for relativistic particles in external fields. This allows us to find a

relativistic operator equation of spin motion and easily determine its classical limit. This

result provides a deficient quantum-mechanical basis for the deuteron EDM experiment.

Finally, we calculate for the first time scalar and tensor electric and magnetic polariz-

abilities of pointlike (structureless) spin-1 particles.

We use the system of units h̄ = 1, c = 1.

BASIC EQUATIONS

Proca equations [7] for spin-1 particles with the Corben-Schwinger term [8] have the form

Uµν = DµUν −DνUµ, µ, ν = 0, 1, 2, 3, (1)

DµUµν −m2Uν + ieκUµFµν = 0, (2)

where Dµ = ∂µ + ieAµ is the covariant derivative, Aµ is the four-potential, Fµν is the

electromagnetic field tensor, and Uµν = −Uνµ. The Corben-Schwinger term is proportional

to κ = g − 1, where g = 2mµ/(es) = 2mµ/e for spin-1 particles. Since the Proca equations
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correspond to g = 1, this term describes not only the AMM but also a part of the normal

(g = 2) magnetic moment [12]. Spin-1 particles can be also described by the Duffin-Kemmer-

Petiaux equation [13], Stuckelberg equation [14], multispinor Bargmann-Wigner equations

[15], and other equations.

Since the spin of Proca particles has three components, six components of the wave func-

tion are independent. Spatial components of Eq. (1) and a time component of Eq. (2) can

be expressed in terms of the others. As a result, the equations for the ten-component wave

function can be reduced to the equation for the six-component one (Sakata-Taketani trans-

formation [16]). The distinctive feature of this transformation is that it obtains expressions

for U0 and Uij (i, j = 1, 2, 3) which do not contain the time derivative and then it substitutes

them into equations for the remaining components. From Eq. (2) we have

U0 =
1

m2

(

DiUi0 + ieκU iFi0

)

.

Next we introduce two vector functions, φ and U , whose components are given by iUi0/m

and U i and form the six-component Sakata-Taketani wave function

Ψ =
1√
2







φ +U

φ−U





 .

As the generalized Sakata-Taketani equation can be expressed in terms of spin-1 matrices

[12], the wave function of this equation is similar to a Dirac bispinor. The general form of

the Hamiltonian in the Sakata-Taketani representation obtained by Young and Bludman

[12] is given by

H = eΦ + ρ3m+ iρ2
1

m
(S ·D)2

−(ρ3 + iρ2)
1

2m
(D2 + eS ·B)− (ρ3 − iρ2)

eκ

2m
(S ·B)

− eκ

2m2
(1 + ρ1)

[

(S ·E)(S ·D)− iS · [E ×D]−E ·D
]

+
eκ

2m2
(1− ρ1)

[

(S ·D)(S ·E)− iS · [D ×E]−D ·E
]

−e2κ2

2m3
(ρ3 − iρ2)

[

(S ·E)2 −E2

]

,

(3)

where S is the 3 × 3 spin matrix, ρi (i = 1, 2, 3) are the 2 × 2 Pauli matrices, κ = const,

E is the electric field strength, and B is the magnetic field induction. We do not consider

a nonintrinsic quadrupole moment included in Ref. [12]. Denotation ρiSj means the direct

product of two matrices. For spin-1 particles, the polarization operator is equal to Π = ρ3S.
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It is analogous to the corresponding Dirac operator which can be written in a similar form

(see Ref. [17]): Π = ρ3σ.

In Refs. [18, 19], Hamiltonian (3) has been transformed to the FW representation for

relativistic particles in electric and magnetic fields with allowance for derivatives of the elec-

tric field strength. The terms proportional to the derivatives of the magnetic field induction

have not been calculated.

INCLUSION OF ELECTRIC DIPOLE MOMENTS

To describe the EDMs of spin-1/2 particles, the terms proportional to the γ5 matrix can

be added to the Lagrangian and the Dirac equation [20]. It has been shown in Ref. [3] that

there exists another way to include the EDMs with the tensor Gµν = (B,−E) dual to the

electromagnetic field one, Fµν = (E,B). In this case, the Lagrangians describing the AMM

and EDM become very similar and are given by [3]

LAMM =
µ′

2
σµνFµν , LEDM = −d

2
σµνGµν , (4)

where d is the EDM of the particle. The generalized Dirac-Pauli equation assumes the form

[3]
[

γµπµ −m+
µ′

2
σµνFµν −

d

2
σµνGµν

]

Ψ = 0. (5)

The terms describing the contributions of the AMM and EDM to the Hamiltonian are

transformed into each other using the substitutions B → E, E → −B, µ′ → d. The

corresponding relativistic FW Hamiltonian and equations of motion have been derived in

Ref. [3] by the method developed in Ref. [10].

Similarly, we can supplement the Lagrangian of spin-1 particles [12] containing the AMM

term, LAMM = (ieκ/2)(U †
µUν − U †

νUµ)F
µν , with the EDM one:

LEDM = −(ieη/2)(U †
µUν − U †

νUµ)G
µν , (6)

where η = 2dm/(es) = 2dm/e. The corresponding generalized PCS equations read

Uµν = DµUν −DνUµ,

DµUµν −m2Uν + ieκUµFµν − ieηUµGµν = 0.
(7)
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This generalization brings Eq. (3) to the form

H = eΦ + ρ3m+ iρ2
1

m
(S ·D)2

−(ρ3 + iρ2)
1

2m
(D2 + eS ·B)− (ρ3 − iρ2)

eκ

2m
(S ·B)

− eκ

2m2
(1 + ρ1)

[

(S ·E)(S ·D)− iS · [E ×D]−E ·D
]

+
eκ

2m2
(1− ρ1)

[

(S ·D)(S ·E)− iS · [D ×E]−D ·E
]

−e2κ2

2m2
(ρ3−iρ2)

[

(S ·E)2 −E2

]

− (ρ3−iρ2)
eη

2m
(S ·E)

+
eη

2m2
(1 + ρ1)

[

(S ·B)(S ·D)− iS · [B ×D]−B ·D
]

− eη

2m2
(1−ρ1)

[

(S ·D)(S ·B)− iS · [D×B]−D ·B
]

,

(8)

where only first-order terms in η are taken into account.

The use of the appropriate method of the FW transformation for relativistic particles in

external fields [10, 11] leads to the following FW Hamiltonian:

HFW = ρ3ǫ
′ + eΦ +

e

4m

[{(

g − 2

2

+
m

ǫ′ +m

)

1

ǫ′
, (S · [π ×E]− S · [E × π])

}

−ρ3

{(

g − 2 +
2m

ǫ′

)

,S ·B
}

+ρ3
g − 2

4

{

1

ǫ′(ǫ′ +m)
, {S · π, (π ·B +B · π)}

}]

+
eη

8m

[{

1

ǫ′
, (S · [B×π]− S · [π×B])

}

− 4ρ3S ·E

+
ρ3
2

{

1

ǫ′(ǫ′ +m)
, {S · π, (π ·E +E · π)}

}]

,

(9)

where ǫ′ =
√
m2 + π2. In this Hamiltonian, terms neither bilinear in the field strengths

nor those containing derivatives of these strengths are taken into account. Commutators

and anticommutators are defined by [. . . , . . .] and {. . . , . . .}, respectively. Equation (9)

generalizes the corresponding one derived in Ref. [18] without allowance for the EDM

terms.

EQUATIONS OF MOTION AND THEIR CLASSICAL LIMIT

Equation (9) allows us to derive quantum-mechanical equations of motion and then obtain

their classical limit. Such equations are defined by the commutators of the FW Hamiltonian
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with appropriate operators:

dπ

dt
=

i

h̄
[HFW ,π] +

∂π

∂t
=

i

h̄
[HFW ,π]− e

∂A

∂t
,

dΠ

dt
=

i

h̄
[HFW ,Π] =

1

2
(Ω×Π−Π×Ω) ,

(10)

where Ω is the operator of angular velocity of spin motion.

The operator equation of spin motion has the form:

dΠ

dt
=

1

4

{

(

µ0m

ǫ′ +m
+ µ′

)

1

ǫ′
,
(

Π× [E × π]

−Π× [π ×E]
)

}

+
1

2

{(

µ0m

ǫ′
+ µ′

)

, [Σ×B]
}

−µ′

4

{

1

ǫ′(ǫ′ +m)
,
(

[Σ× π](π ·B) + (B · π)[Σ×π]
)

}

−d

4

{

1

ǫ′
, (Π× [B × π]−Π× [π ×B])

}

+ d[Σ×E]

−d

4

{

1

ǫ′(ǫ′ +m)
,
(

[Σ× π](π ·E) + (E · π)[Σ×π]
)

}

,

(11)

where µ0 = e/m, Σ = IS (I is the unit 2×2 matrix). In this equation, second-order terms

in spin are not taken into account. Their contribution into the Hamiltonian is considered

below. Equation (11) is fully consistent with the corresponding one for spin-1/2 particles

with the EDM [3]. Finding its classical limit reduces to the replacement of operators by

respective classical quantities [21] and results in

ds

dt
=

e

m

{

1

ǫ′

(

g − 2

2
+

m

ǫ′ +m

)

[s× [E × π]]

+
(

g − 2

2
+

m

ǫ′

)

[s×B]− g − 2

2ǫ′(ǫ′ +m)
[s× π](π ·B)

− η

2ǫ′
[s× [B × π]] +

η

2
[s×E]

− η

2ǫ′(ǫ′ +m)
[s× π](π ·E)

}

.

(12)

Equation (12) coincides with the respective classical one [1] which generalizes the Thomas-

Bargmann-Michel-Telegdi equation [22, 23].

This result perfectly proves self-consistency of the relativistic wave equations for spin-1

particles which was called in question for a long time (see Refs. [24, 25] and references

therein). Their self-consistency is also confirmed by the form of the quantum-mechanical
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equation of particle motion:

dπ

dt
= eE + ρ3

e

4

{

1

ǫ′
,
(

[π ×B]− [B × π]
)

}

+
1

4

{

(

µ0m

ǫ′ +m
+ µ′

)

1

ǫ′
,∇

(

Σ · [E×π]−Σ · [π×E]
)

}

+
1

2

{

(

µ0m

ǫ′
+ µ′

)

,∇(Π ·B)

}

−µ′

8

{

1

ǫ′(ǫ′ +m)
,
{

(Π·π),∇
(

π ·B+B ·π
)

}}

.

(13)

In Eq. (13), the terms dependent on the EDM are omitted. This equation agrees with the

corresponding one describing spin-1/2 particles [10], and it is also in accord with classical

theory. Spin-dependent terms define a relativistic Stern-Gerlach force. For spin-1 particles

in a uniform magnetic field, the quantum-mechanical equations of motion have been derived

in Ref. [26].

SCALAR AND TENSOR POLARIZABILITIES OF POINTLIKE PARTICLES

The W boson being a charged pointlike (structureless) spin-1 particle can be described by

the PCS equations. Such a particle possesses some electric and magnetic moments. The W

boson may have an AMM (see Refs. [27–29] and references therein). This AMM is defined

by radiative corrections. The quantum mechanics allows us to derive other moments of the

pointlike particle with the definite g factor. Of course, moments of pointlike particles can

be affected by radiative corrections, and moments of pointlike and composed particles can

significantly differ.

The quadrupole and contact interactions of a charged structureless spin-1 particle pos-

sessing the AMM were first determined by Young and Bludman [12] in the nonrelativistic

approximation. In Ref. [18], a relativistic description of these interactions has been made.

Pomeransky and Khriplovich [30] have obtained relativistic expressions for the quadrupole

interaction of arbitrary-spin particles (without analysis of the contact interaction). The non-

relativistic formula for the quadrupole and contact interactions of a charged structureless

spin-1 particle is

W =
e(g − 1)

4m2
(SiSj + SjSi)

∂Ei

∂xj

− e(g − 1)

2m2
∇ ·E. (14)

The corresponding quadrupole moment is equal to Q = −e(g − 1)/m2 [12, 18, 30].
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The nonrelativistic FW transformation of the initial Young-Bludman Hamiltonian (9)

makes it possible to determine the polarizabilities defined as follows:

∆HFW = −1

2
αSE

2−1

2
βSB

2−αT (S ·E)2−βT (S ·B)2. (15)

Here αS and βS are the scalar electric and magnetic polarizabilities, and αT and βT are the

tensor electric and magnetic ones. The related terms in the nonrelativistic FW Hamiltonian

calculated for the first time read

∆HFW = ρ3
e2h̄2(g−1)2

2m3
E2 − ρ3

e2h̄2(g−1)2

2m3
(S ·E)2

−ρ3
e2h̄2

8m3

[

(g − 1)2 + 3
]

(S ·B)2.

(16)

For positive-energy states, the polarizabilities are given by

αS = −e2h̄2(g − 1)2

m3
, αT =

e2h̄2(g − 1)2

2m3
,

βT =
e2h̄2

8m3

[

(g − 1)2 + 3
]

,

(17)

and the scalar magnetic polarizability is zero. The tensor electric and magnetic polarizabili-

ties of spin-1 particles without the AMM are equal to each other. The nonzero AMM brings

a difference between them.

DISCUSSION AND SUMMARY

The present work shows that the PCS equations can be added by the EDM-dependent

term. Further transformations allow us to obtain the self-consistent Hamiltonians in the

Sakata-Taketani and FW representations. The classical limit of derived quantum-mechanical

equations of motion coincides with corresponding classical ones. These results demonstrate

self-consistency of quantum mechanics of spin-1 particles and create the sufficient quantum-

mechanical basis for the planned deuteron EDM experiment [4–6].

The deuteron EDM experiment in storage rings is very important. This experiment is

not only complementary to other EDM searches, but for some potential sources of EDMs,

it is superior (see Ref. [5] and references therein).

The calculation of the scalar and tensor electric and magnetic polarizabilities of pointlike

spin-1 particles has been fulfilled for the first time. The scalar magnetic polarizability

happens to be zero. The tensor electric and magnetic polarizabilities of a spin-1 particle with
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the zero AMM are equal to each other. Equation (17) defines the parameters of the W boson

being a charged structureless spin-1 particle. In particular, αS = −1.1 × 10−10 fm3, αT =

βT = 5.4 × 10−11 fm3 for g = 2 and αS = −9.9 × 10−11 fm3, αT = 5.0 × 10−11 fm3, βT =

5.3 × 10−11 fm3 for [29] g − 2 = −4.05 × 10−2. The polarizabilities of composed spin-1

particles are much greater. For example, the tensor electric and magnetic polarizabilities

of the deuteron are of the order of 10−2 ÷ 10−1 fm3 [31], while the corresponding values

for a pointlike particle of the same mass calculated by using Eq. (17) are of the order of

10−6 fm3. We can note an importance of allowance for the tensor polarizabilities in the EDM

experiment (see Ref. [32] and references therein).
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