ETHANOL AS INTERNAL STANDARD FOR DETERMINATION OF VOLATILE COMPOUNDS IN SPIRIT DRINKS BY GAS CHROMATOGRAPHY

S. Charapitsa^ª, S. Bychkov^ª, A. Kavalenka^ª, N. Kulevich^ª, N. Makoed^ª, A. Mazanik^ª,

^a Research Institute for Nuclear Problems of Belarusian State University, Minsk, Belarus

I. Jarmalaite^b, R. Golubevas^b

^b National Food and Veterinary Risk Assessment Institute, Vilnius, Lithuania

Quality and Safety Control of Alcohol Drinks.

Over the world day-and-night according to the Official Methods the thouthands accredited laboratories should determine the following 9 (nine) volatile compounds in spirit drinks:

acetaldehyde, methyl acetate, ethyl acetate, methanol, 2-propanol, 1-propanol, isobutyl alcohol, n-butanol, isoamyl alcohol.

Concentrations of these compounds are expressed in milligrams per liter - mg/L of absolute alcohol (AA).

For calculation of concentrations the internal standard (IS) method is used (AOAC Official Methods 972.10, Commission Regulation EC 2870-2000). These documents propose to use pental-3-ol as IS.

Some researchers (GOST R 51698, Russia) make calculation by means of the external standard (ES) method to avoid the introduction of another source of error, such as the addition of an internal standard.

Finally, to get quantitative values of impurity concentrations per liter of absolute alcohol it is also required

- to measure alcohol strength (v/v concentration) of the analyzed sample.

Introduction

Early in the paper (Journal of Analytical Chemistry, 2003, v. 58, 368 – 371) the idea to use main component (solvent) for determination of impurities concentration was proposed.

This method provides determination of volatile compounds concentrations in spirit drinks directly expressed in milligrams per liter (mg/L) of absolute alcohol (AA) according to the Official Methods without measuring of alcohol strength of analyzed sample.

It is possible at the present time to introduce this new approach for routine practice of analytical laboratories due to modern GC with wide range of signal registration from flame ionization detector (FID). The linear range of modern FID is generally more than 10⁷. Signal registration from impurities compounds and from main component ethanol takes place without any distortions.

- 1 acetaldehyde
- 2 methyl acetate
- 3 ethyl acetate
- 4 methanol
- 5 2-propanol
 - 5 ethano
- 7 1-propanol
- 8 isobutyl alcohol
- 9 n-butanol
- 10 isoamyl alcohol

Typical chromatogram of standard ethanol-water (40% and 60%) solutions. To show the dominant component ethanol and another compounds synchronously the logarithm scale of response signal is chosen.

Calculations

Calibration of chromatograph includes the measuring of response factors (RF) for every analyzed compound relative to ethanol. Numeric values of RF are calculated from chromatographic data for certified reference material (CRM) with known concentrations of analyzed compounds and may be expressed by the following equations:

$$RF_{i} = \frac{A_{Et}^{CRM}}{A_{i}^{CRM}} / \frac{C_{Et}^{CRM}}{C_{i}^{CRM}} = \frac{A_{Et}^{CRM} \cdot C_{i}^{CRM}}{A_{i}^{CRM} \cdot C_{Et}^{CRM}}$$

$$C_i = RF_i \times \frac{A_i}{A_{Et}} \times \rho_{Et}$$
⁽²⁾

 ρ_{Et} = 789300 mg/L - density of ethanol

Gas Chromatographic conditions

- GC equipped with FID, a split/splitless injector;
- liquid autosampler;
- Unichrom software;
- capillary column Rt-Wax, 60 m x 0.53 mm, phase thickness 1 µm;
- initial isotherm at 75 °C (9 min), raised to 155 °C at rate 7 °C/min with final isotherm of 155 °C (2.6 min);
- carrier gas was nitrogen;
- gas flow was 2.44 mL/min;
- injector volume 0.5 µL and split ratio 1:20.

6 standard ethanol-water (96:4) solutions were prepared to measure RF relative to ethanol.

Compound	Linear range	Slope	Correlation	LOD*
Compound	(mg/L)	(RF)	coefficient	(mg/L)
acetaldehyde	2.24 - 1990	1.559	0.9996	0.289
methyl acetate	2.09 - 2000	1.517	0.9997	0.333
ethyl acetate	2.20 - 2094	1.247	0.9998	0.322
methanol	<u>1.9 - 20 045</u>	1.377	0.9999	0.394
2-propanol	3.74 - 2033	0.914	0.9998	0.319
1-propanol	1.99 - 2094	0.809	0.9998	0.262
isobutyl alcohol	2.23 - 2000	0.674	0.9998	0.235
n-butanol	1.98 - 2000	0.737	0.9998	0.267
isoamyl alcohol	2.18 - 2073	0.681	0.9999	0.276
* limit of detection	on (LOD)			

Table 1. Analytical characteristics of the obtained calibration graphs of volatile compounds in standard ethanol-water (96:4) solutions.

Experimental results

In order to study accuracy of the proposed methodical approach in the case of large ranges of volatile compounds concentrations 6 – 20000 mg/L for methanol and 1 – 2000 mg/L for another 8 volatile compounds reference ethanol-water solutions were prepared with known concentrations of volatile compounds.

Validation of this method was been planed in accordance with ISO 5725.

There were 8 weight-method prepared reference solutions.

Every reference solution was injected 30 (15 x 2) times.

Compound	Concentration according to certificate, (mg/L)	Concentration measured by IS method, (mg/L)	Relative
	CRM, mg/L	experiment, mg/L	discrepancy, %
	1.158	1.129	-2.50
	5.137	5.182	0.88
	10.11	9.921	1.87
acetaldehyde	99.64	93.86	-5.80
	497.6	481.1	-3.32
	1989	2037	2.42
	1,000	1.005	0.50
	5.000	5 121	242
	10.00	9.905	_0.95
methyl acetate	100.0	9635	-0.25
	500.0	494.0	-5.05
	2000	484.9	-3.02
	2000	2042	2.10
	1.047	1.072	2.39
	5.234	5.374	2.67
ethyl acetate	10.47	10.45	-0.19
entyracetate	104.7	102.0	-2.58
	523.4	512.2	-2.14
	2093	2115	1.02
	5.975	6.044	1.15
	53.07	53.51	0.83
	103.2	102.97	-0.22
methanol	1005	988.1	-1.68
	5013	4987	-0.52
	20045	20118	0.36
	26045	26110	0.30
	6 608	6 754	0.94
	11 79	11.22	0.04
2-propanol	11.70	101.0	-0.00
	105.0	101.0	-2.15
	2022	203.2	-1.22
	2033	2047	0.69
	1.047	0.997	-4.78
	5.234	5.223	-0.21
l-propanol	10.21	10.23	0.20
г-рюрают	103.2	100.2	-3.10
	523.4	513.6	-1.87
	2094	2125	1.51
	1.000	0.971	-2.90
	5.000	5.033	0.66
· - · - · - · - · - · · · · · · · · · ·	10.00	9.82	-1.80
isobutyl alcoho.	100.0	97.7	-2.30
	500.0	491	-1.80
	2000	2032	1.60
	1.000	0.991	-0.90
	5.000	5.061	1.22
	10.00	9,89	-1,10
n-butanol	100.0	97,10	-2,90
	500.0	491.0	-1.80
	2000	2036	1.80
	2000	2000	1.00
	1.036	1.003	-3.19
	5.182	5.169	-0.25
isoamul alcohol	10.37	10.21	-1.54
Boamyr alcohol	104.0	101.0	-2.60
	518.0	510.0	-1.58
	2073	2110	1.78

Experimental results

Resume:

The repeatability in the worst case for lower concentrations 1 mg/L did not exceed **3.6 %**.

Relative accuracy did not exceed 11 %.

Compound	Concentration according to certificate, (mg/L)	Measured concentration after dilution 1:1, (mg/L)	Relative discrepancy, %	Measured concentration after dilution 1:3, (mg/L)	Relative discrepancy, %
	10.11	10.34	2.2	10.50	3.8
acetaldehyde	99.64	97.28	-2.4	97.40	-7.3
	497.6	483.3	-2.9	473.1	-4.9
	10.00	10.25	2.5	9.78	-2.2
methyl acetate	100.0	92.76	-7.2	89.17	-10.8
5	500.0	463.7	-7.3	452.4	-9.5
	10.47	10.18	-2.8	10.63	1.6
ethyl acetate	104.7	100.0	-4.5	95.46	-8.8
	523.4	489.6	-6.5	477.3	-8.8
	103.2	97.99	-5.0	95.18	-7.8
methanol	1005	921.9	-8.3	904.1	-10.0
	5013	4654	-7.2	4514	-9.9
	11.80	11.63	-1.2	10.56	-10.4
2-propanol	103.2	97.86	-5.2	93.13	-9.7
	509.4	479.5	-5.9	463.7	-9.0
	10.21	10.36	1.5	10.01	-1.9
1-propanol	102.1	98.00	-4.0	96.23	-5.7
	523.4	482.9	-5.8	483.2	-7.7
	10.00	10.42	4.2	10.35	3.5
isobutyl alcohol	100.0	96.87	-3.1	94.32	-5.7
	500.0	480.1	-4.0	471.5	-5.7
	10.00	10.17	1.7	9.98	-0.2
n-butanol	100.0	97.02	-3.0	95.21	-4.8
	500.0	482.9	-3.4	475.2	-5.0
	10.37	11.28	8.8	10.35	-0.2
isoamyl alcohol	103.7	103.0	-0.6	99.52	-4.0
-	518.2	509.0	-1.8	500.6	-3.4

Table 3. Verification of method stability against dilution. Three reference ethanol-water solutions were analyzed after dilution with water in ratio 1:1 and 1:3.

Metrologic parameters presentation of graduation curves.

												0,00000	0,00000		
	<													Σ (ζ Σ) 5 10 min	_
đ		Channel	+/-	Visible	Colour	Style	Thickness	Altered	Operator	Defence	Scenario	Sample	Mode	Name	
	13	1 - FID1	\checkmark				0	10:54:52 11.12.2009					Режим5	Sample № A310 - the 1st measurement	
	14	1 - FID1	\checkmark				0	11:30:44 11.12.2009					Режим5	Sample № A310 - the 2nd measurement	
	15	1 - FID1	\checkmark				0	11:31:48 09.12.2009						PB2 - Quality Conctrol - 1st measurement	Į.
2	16	1 - FID1	\checkmark				0	12:51:23 09.12.2009						PB2 - Quality Conctrol - 2nd measurement	1
	17	1 - FID1	\checkmark				0	13:27:14 09.12.2009		\checkmark				PB2 - Certificate Data	

	Calibration curve for	Relative to	Calibratio	IT ON CONCE		Formula	a	b	с 	u	NING	RRIVIS, 20	N-	Signal	L.m. Time		L.m. Signal	R.m. Time	R.m. Signal
1	acetaldehyde	ethanol	(A) - Area	Mass	<u> </u>	<i>y</i> = <i>c</i> ·×	0	0	2,521	0 3,0	0253E-007	1,9899	0,99898	Channel 1	2.	81	0.0108	2.87	0.010
2	methyl acetate	ethanol	(A) - Area	Mass		$y = c \cdot x$	0	0	1,5665	0 6,0	8279E-007	4,2603	0,99646		,	2	-,	_,	
3	ethyl acetate	ethanol	(A) - Area	Mass		$y = c \cdot x$	0	0	0,97775	0 5,3	2272E-007	3,334	0,99784	L		thai			
4	methanol	ethanol	(A) - Area	Mass		$y = c \cdot x$	0	0	1,1843	0 5,0	0962E-007	0,25055	0,99998	0,025	11	æ			
5	2-propanol	ethanol	(A) - Area	Mass		$y = c \cdot x$	0	0	0,88097	0 3,6	6726E-007	2,232	0,99881	·		1			
6	ethanol		(A) - Area	Mass		$y = c \cdot x$	0	0	124,5	0	4398,3	0,55724	0	F					
7	1-propanol	ethanol	(A) - Area	Mass		$y = c \cdot x$	0	0	0,6506	0 2,3	7924E-007	2,0037	0,99922	0,024					
8	isobutyl alcohol	ethanol	(A) - Area	Mass		$y = c \cdot x$	0	0	0,51019	0 1,3	2664E-007	0,90869	0,99984	II I					
9	n-butanol	ethanol	(A) - Area	Mass		$y = c \cdot x$	0	0	0,58347	0 4,3	3741E-008	0,30999	0,99998	0,023					
10	isoamyl alcohol	ethanol	(A) - Area	Mass		$y = c \cdot x$	0	0	0,51644	0 1,5	5132E-007	1,0724	0,99977						
														0,022		1			^
	1	0.00		CICoto I										·		L .			
	Layer Un AlAsta		30		000	A.A. 11		4 4 0 4	0070 (-	F					
1	3 🗹 7,1803E-	005 8,537	7E-005	0,0004	CIC std ((AIA std);) = (1,184	2972•(AIA sto	d))∓o'r	1962E-00	(- ^{120,021}		1			
2	2 🗹 7,1948E-	005 8,537	7E-005	·										E					
3	1 🔽 7,1986E-	005 8,537	7E-005	6 0003 -	R = 0,93	9997050	9					_		0,020					
4	6 🔽 0,00016	034 0,000	019084	1							_								
5	4 🔽 0,0001	608 0,000	019084											0,019-					
6	5 🔽 0.00016	087 0.000	019084	0,0002-										1 1					
7	8 2 0.00027	146 0.000	132142	1										F					Н
Ľ.	7 2 0,00027	140 0,000	020440	0,0001		-								E_010'0		1			
	7 🔽 0,00027	164 0,000	332142	-															
- a	9 🗹 0,00027	209 0,000	J32142	0,0000										0,017		4			
							0.0	001	1		0.0002	1 1	A/Astd	1					
_	Peaks		1	0,00			0,00	001			0,0002		X	0,016-		1	De la		
No	Name	t.min	A.pA.min	H.pA C	a C.mo/L (C	Mass m	a/L	Colour	r mol	% 1	Titre a/I	Molarity M/I		E			pol pa		
1	acetaldehvde	2.831	0.03637	1.53478	11,000	00 11.35	271		0.0	0000	0.00000	0.00000	1.00000	0.015			-pr		alco
2	methyl acetate	3 431	0.06118	2 16793		11.86	768			0000	0.00000	0,00000	1 00000	1 10,010	ate at	\	ξ Å		
3	ethyl acetate	3,923	0.09474	2.60751	11,250	00 11 47	063		0.0	0000	0.00000	0.00000	1.00000	1	a cet	1	nqc	5	▲ Oan
4	methanol	4 011	1 02487	21,69608	150.632	150.30	079		0.0	0000	0.00000	0,00000	1 00000	0,014			<u>.</u> .	tau	
5	2-propanol	4 307	0.10627	1 81323	11 750	11.59	302			0000	0.00000	0.00000	1 00000	8	ett a			Ę	
6	ethanol	4 507	6373 97171	819.06168	9300.000	00 9300.00	000 0		0,0	0000	0.00000	0,00000	1 00000	0,013-				ī	
7	1-propapol	6 593	0.12404	1.63685		nn 9.99	370		0,0	0000	0,00000	0,00000	1 00000	∥ ∃≹	i I			- 1	
6	isobutyl elcobol	8,407	0,12404	1 00/30	10,000	00 10.00	301		0,0	0000	0.00000	0,00000	1,00000	0.012					
0	n butenol	10,497	0,13034	1 91719	10,000	00 10,00	375		0,0	0000	0,00000	0,00000	1,00000			7			
10	iccorrul clockel	10,300	0,13073	2,0004		00 10,02	575		0,0	0000	0,00000	0,00000	1,00000	1					
10	isoaniyi alconoi	13,361	0,15740	2,03031			470		- 0,0	0000	0,00000	0,0000	1,00000						
			0373,07364	0037,02047	- 3556,132	0019000,67	170		0,0	0000 F	0,00000	0,00000	1,00000			· ·			<u> </u>
<													>	~ ~ ~ ~		Ś		10	min
HI		1						1 -			1								

ダ・圖 剄 || ◆ ◆ ◆ ★ ★ || 先 上 本 焼 先

RRMS, %

 \mathbb{R}^2

- B D

Chromatogram

Info

Signal

🕎 NAS UniChrom 🏽 - ["VC_in Alcohol_Drinks_Ethanol_as_IS_eng-Template.uwb" - (1) Relative Graduation PB2 - Quality Conctrol - 1st measurement]

а

b

С

d

RMS

💹 File Edit View Tools Windows Help

Pa 💼

Relative to

****?

⇔ 1:

✨

Calibration on Concentration LOG Formula

Ŷ

D • 🖻 🔒 🎒

Calibration curve for

Graduation

15/17

Samples 📓 Report GC In: 🔨 🕨

Detailed method description is presented in the internet here:

Generation of final report of any special official form with help of OLE Automation technology. How introduce this new methodological approach in the world market ?

There is only one working way. To propose for customers more easy, attractive and effective way for laboratory business. There is the following situation in the researches and control laboratories over the world:

- very heterogeneous park of analytical equipments.

Gas chromatographs

Liquid chromatographs

Spectrometers UV, IR, Vis, AES, AAS, MS

The analogue situation was approximately 30 years ago.

The were many text processor software packages in your laboratories.

Demand of free migration of text documents between different computers has generated the following situation:

- the PC may be different but the text processor software Microsoft Word is the same in the most offices computers over the world.

To unifive work with different analytical equipments Unichrom software package was proposed.

Control laboratory in the biggest petrochemical JS "Nevynnommuski Azot". Unichrom from one PC controls simultaneously: Crystal-5000 (3), Crystall-2000M (3), HP6890 (1), Schimadzu-2010 (1), Tsvett-800 (2).

Installation with local market language: English, France, German orChinese. (Real screenshot - no Photoshop !)

Resume 1st

Thousands of testing laboratories over the world day-and-night carry out gas chromatographic analysis of volatile compounds in spirit drinks.

They may test this new method in their real practice. It is important to note that there is no need to perform any additional measurements.

This methodical approach could be tested while performing current measurements with existing instrumentation and calculations could be done in parallel according to the following different methods:

- External Standard (ES);
- traditional Internal Standard with addition of pental-3-ol as IS;
- using ethanol as IS.

Resume 2nd

1.) Analyzing of obtained data from many testing laboratories showed that RF for different GC very close to each other and they may betabulated !

2.) Significant decrease requirements for graduation of GC - until the once in a year !

3.) Detailed information with ready working templates are placed in the Internet here: http://inp.bsu.by/labs/LAR_For_site/Ethanol_as_Internal_Standart.html

Acknowledgments

The authors wish to thank Grisha Deitch from State of Israel and Ilya Kuselman from the National Physical Laboratory of Israel for their capacitated opportunity to present results on this Conference.

Thank the RUE "Minsk-Kristall" Winery and Distillery Plant for supplying the ethanol of high grade quality, the Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus for purification of reagents and New Analytical Systems Ltd. for instrumentation support.

We thanks Prof. Nataliya I. Zayats from Belarus State Technology University for assistance in metrological treatment of experimental data.

Thanks You for Your attention !